Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation

Abstract

The in vivo regulation of hematopoietic stem cell (HSC) function is poorly understood. Here, we show that hematopoietic repopulation can be augmented by administration of a glycogen synthase kinase-3 (GSK-3) inhibitor to recipient mice transplanted with mouse or human HSCs. GSK-3 inhibitor treatment improved neutrophil and megakaryocyte recovery, recipient survival and resulted in enhanced sustained long-term repopulation. The output of primitive Linc-Kit+Sca-1+ cells and progenitors from HSCs increased upon GSK-3 inhibitor treatment without altering secondary repopulating ability, suggesting that the HSC pool is maintained while overall hematopoietic reconstitution is increased. GSK-3 inhibitors were found to modulate gene targets of Wnt, Hedgehog and Notch pathways in cells comprising the primitive hematopoietic compartment without affecting mature cells. Our study establishes GSK-3 as a specific in vivo modulator of HSC activity, and suggests that administration of GSK-3 inhibitors may provide a clinical means to directly enhance the repopulating capacity of transplanted HSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo administration of GSK-3 inhibitor augments long-term repopulating capacity of wild-type HSCs and short-term recovery of peripheral blood counts.
Figure 2: In vivo administration of GSK-3 inhibitor augments human neonatal and adult HSC capacity.
Figure 3: In vivo administration of GSK-3 inhibitor expands a subset of Linc-Kit+Sca-1+ cells with progenitor capacity but not secondary reconstitution potential.
Figure 4: Short-term in vivo administration of GSK-3 inhibitor expands and increases cycling of primitive Linc-Kit+Sca-1+ cells.
Figure 5: In vivo administration of GSK-3 inhibitor regulates targets of the Wnt, Notch and Hedgehog pathways in Linc-Kit+Sca-1+ cells.
Figure 6: In vitro effects of GSK-3 inhibitor on purified Linc-Kit+Sca-1+ cells and summary model.

Similar content being viewed by others

References

  1. Baron, F., Storb, R. & Little, M.T. Hematopoietic cell transplantation: five decades of progress. Arch. Med. Res. 34, 528–544 (2003).

    Article  CAS  Google Scholar 

  2. Giralt, S. Bone marrow transplant in myelodysplastic syndromes: new technologies, same questions. Curr. Hematol. Rep. 3, 165–172 (2004).

    PubMed  Google Scholar 

  3. Vollweiler, J.L., Zielske, S.P., Reese, J.S. & Gerson, S.L. Hematopoietic stem cell gene therapy: progress toward therapeutic targets. Bone Marrow Transplant. 32, 1–7 (2003).

    Article  CAS  Google Scholar 

  4. Moscardo, F., Sanz, G.F. & Sanz, M.A. Unrelated-donor cord blood transplantation for adult hematological malignancies. Leuk. Lymphoma 45, 11–18 (2004).

    Article  Google Scholar 

  5. Cohena, Y. & Nagler, A. Hematopoietic stem-cell transplantation using umbilical-cord blood. Leuk. Lymphoma 44, 1287–1299 (2003).

    Article  Google Scholar 

  6. Rocha, V. et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N. Engl. J. Med. 351, 2276–2285 (2004).

    Article  CAS  Google Scholar 

  7. Laughlin, M.J. et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N. Engl. J. Med. 351, 2265–2275 (2004).

    Article  CAS  Google Scholar 

  8. Srour, E.F., Abonour, R., Cornetta, K. & Traycoff, C.M. Ex vivo expansion of hematopoietic stem and progenitor cells: are we there yet? J. Hematother. 8, 93–102 (1999).

    Article  CAS  Google Scholar 

  9. Devine, S.M., Lazarus, H.M. & Emerson, S.G. Clinical application of hematopoietic progenitor cell expansion: current status and future prospects. Bone Marrow Transplant. 31, 241–252 (2003).

    Article  CAS  Google Scholar 

  10. Chabot, B., Stephenson, D.A., Chapman, V.M., Besmer, P. & Bernstein, A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335, 88–89 (1988).

    Article  CAS  Google Scholar 

  11. Geissler, E.N., Ryan, M.A. & Housman, D.E. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55, 185–192 (1988).

    Article  CAS  Google Scholar 

  12. Frame, S. & Cohen, P. GSK-3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1–16 (2001).

    Article  CAS  Google Scholar 

  13. Cohen, P. The hormonal control of glycogen metabolism in mammalian muscle by multivalent phosphorylation. Biochem. Soc. Trans. 7, 459–480 (1979).

    Article  CAS  Google Scholar 

  14. Embi, N., Rylatt, D.B. & Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 107, 519–527 (1980).

    Article  CAS  Google Scholar 

  15. Yost, C. et al. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443–1454 (1996).

    Article  CAS  Google Scholar 

  16. Jia, J. et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416, 548–552 (2002).

    Article  CAS  Google Scholar 

  17. Foltz, D.R., Santiago, M.C., Berechid, B.E. & Nye, J.S. Glycogen synthase kinase-3b modulates Notch signaling and stability. Curr. Biol. 12, 1006–1011 (2002).

    Article  CAS  Google Scholar 

  18. Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl. Acad. Sci. USA 100, 3422–3427 (2003).

    Article  CAS  Google Scholar 

  19. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  20. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2, 172–180 (2001).

    Article  CAS  Google Scholar 

  21. Karanu, F.N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192, 1365–1372 (2000).

    Article  CAS  Google Scholar 

  22. Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6, 314–322 (2005).

    Article  CAS  Google Scholar 

  23. Cline, G.W. et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes 51, 2903–2910 (2002).

    Article  CAS  Google Scholar 

  24. Ring, D.B. et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52, 588–595 (2003).

    Article  CAS  Google Scholar 

  25. Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  Google Scholar 

  26. Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nat. Med. 2, 1329–1337 (1996).

    Article  CAS  Google Scholar 

  27. Bhatia, M., Wang, J.C., Kapp, U., Bonnet, D. & Dick, J.E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. USA 94, 5320–5325 (1997).

    Article  CAS  Google Scholar 

  28. Behrens, J. et al. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280, 596–599 (1998).

    Article  CAS  Google Scholar 

  29. DasGupta., R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    CAS  PubMed  Google Scholar 

  30. Yan, D. et al. Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta-catenin signaling is activated in human colon tumors. Proc. Natl. Acad. Sci. USA 98, 14973–14978 (2001).

    Article  CAS  Google Scholar 

  31. Jho, E.H. et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  Google Scholar 

  32. Issack, P.S. & Ziff, E.B. Altered expression of helix-loop-helix transcriptional regulators and cyclin D1 in Wnt-1-transformed PC12 cells. Cell Growth Differ. 9, 837–845 (1998).

    CAS  PubMed  Google Scholar 

  33. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6, 1278–1281 (2000).

    Article  CAS  Google Scholar 

  34. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    Article  CAS  Google Scholar 

  35. Marigo, V., Johnson, R.L., Vortkamp, A. & Tabin, C.J. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev. Biol. 180, 273–283 (1996).

    Article  CAS  Google Scholar 

  36. Marigo, V. & Tabin, C.J. Regulation of Patched by Sonic hedgehog in the developing neural tube. Proc. Natl. Acad. Sci. USA 93, 9346–9351 (1996).

    Article  CAS  Google Scholar 

  37. Goodrich, L.V., Milenkovic, L., Higgins, K.M. & Scott, M.P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  38. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  Google Scholar 

  39. Reya, T. Regulation of hematopoietic stem cell self-renewal. Recent Prog. Horm. Res. 58, 283–295 (2003).

    Article  CAS  Google Scholar 

  40. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  Google Scholar 

  41. Mancini, S.J. et al. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105, 2340–2342 (2005).

    Article  CAS  Google Scholar 

  42. Cobas, M. et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med. 199, 221–229 (2004).

    Article  CAS  Google Scholar 

  43. Shojaei, F. et al. Hierarchical and ontogenic positions serve to define the molecular basis of human hematopoietic stem cell behavior. Dev. Cell. 8, 651–663 (2005).

    Article  CAS  Google Scholar 

  44. Cohen, P. & Goedert, M. GSK3 inhibitors: Development and therapeutic potential. Nat. Rev. Drug Discov. 3, 479–487 (2004).

    Article  CAS  Google Scholar 

  45. Barker, J.N. et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood 105, 1343–1347 (2005).

    Article  CAS  Google Scholar 

  46. Gluckman, E. Current status of umbilical cord blood hematopoietic stem cell transplantation. Exp. Hematol. 28, 1197–1205 (2000).

    Article  CAS  Google Scholar 

  47. Tsirigotis, M. et al. Analysis of ubiquitination in vivo using a transgenic mouse model. Biotechniques 31, 120–130 (2001).

    Article  CAS  Google Scholar 

  48. Nikoulina, S.E. et al. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes 51, 2190–2198 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Chiron Corporation for providing the GSK-3 inhibitors for these studies, and M. Scott for providing the Ptc1+/−lacZ transgenic mice. We acknowledge L. Gallacher for technical assistance, K. Levac and P. Menendez for critical review of the manuscript, D. Sheerar for cell isolation, the nurses of the labor and delivery division of St. Joseph's Health Care and London Health Sciences Centre for collection of cord blood samples. Funding for this research was provided by a research grant from the Canadian Institutes of Health Research, US National Institutes of Health grant P01 GM069983 (to R.T.M.), the Krembil Foundation, Ontario Research Fund, Canada Research Chair in Stem Cell Biology and Regenerative Medicine (to M.B.), and postgraduate scholarship awards from the Ontario Graduate Society and National Cancer Institute of Canada (to J.J.T.). R.T.M. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickie Bhatia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Progenitor (CFU) capacity and NOD/SCID repopulation activity of primitive mouse bone marrow subsets. (PDF 67 kb)

Supplementary Fig. 2

Administration of GSK-3 inhibitor and survival following sublethal irradiation in the absence of transplanted mouse HSCs. (PDF 30 kb)

Supplementary Table 1

Primer sequences used for real-time PCR amplification. (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trowbridge, J., Xenocostas, A., Moon, R. et al. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12, 89–98 (2006). https://doi.org/10.1038/nm1339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing