Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Muscle-specific Pparg deletion causes insulin resistance

Abstract

Thiazolidinediones (TZDs) are insulin-sensitizing drugs and are potent agonists of the nuclear peroxisome proliferator-activated receptor-γ (PPAR-γ). Although muscle is the major organ responsible for insulin-stimulated glucose disposal, PPAR-γ is more highly expressed in adipose tissue than in muscle. To address this issue, we used the Cre-loxP system to knock out Pparg, the gene encoding PPAR-γ, in mouse skeletal muscle. As early as 4 months of age, mice with targeted disruption of PPAR-γ in muscle showed glucose intolerance and progressive insulin resistance. Using the hyperinsulinemic-euglycemic clamp technique, the in vivo insulin-stimulated glucose disposal rate (IS-GDR) was reduced by 80% and was unchanged by 3 weeks of TZD treatment. These effects reveal a crucial role for muscle PPAR-γ in the maintenance of skeletal muscle insulin action, the etiology of insulin resistance and the action of TZDs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Floxed Pparg targeting construct and muscle gene deletion.
Figure 2: Insulin and glucose tolerance in MKO mice.
Figure 3: In vivo and in vitro insulin sensitivity.
Figure 4: Effect of muscle Pparg deletion on adipose tissue and liver insulin sensitivity.
Figure 5: Effect of TZDs in MKO mice.

Similar content being viewed by others

References

  1. Harris, M.I. et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey. 1988–1994. Diabetes Care 21, 518–524 (1998).

    Article  CAS  Google Scholar 

  2. Meigs, J.B. Epidemiology of the metabolic syndrome. Am. J. Manag. Care 8, S283–S292 (2002).

    PubMed  Google Scholar 

  3. Reaven, G. Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 106, 286–288 (2002).

    Article  Google Scholar 

  4. Suter, S.L., Nolan, J.L., Wallace, P., Gumbiner, B. & Olefsky, J. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care 15, 193–203 (1992).

    Article  CAS  Google Scholar 

  5. Saltiel, A.R. & Olefsky, J.M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45, 1661–1669 (1996).

    Article  CAS  Google Scholar 

  6. Lehmann, J.M. et al. An anti-diabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ. J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  Google Scholar 

  7. Ciaraldi, T.P., Gilmore, A. & Olefsky, J.M. In vitro studies on the action of CS-0455, a new anti-diabetic agent. Metabolism 39, 1056–1062 (1990).

    Article  CAS  Google Scholar 

  8. El-Kebbi, I., Rosner, S. & Pollet, R.J. Regulation of glucose transport by pioglitazone in cultured muscle cells. Metabolism 43, 953–958 (1994).

    Article  CAS  Google Scholar 

  9. Bowen, L., Steven, P.P., Stevenson, R. & Shulman, C.I. The effect of CP-68772, a thiazolidine derivative, on insulin sensitivity in lean and obese Zucker rats. Metabolism 40, 1025–1030 (1991).

    Article  CAS  Google Scholar 

  10. Fujiwara, T., Yoshioka, S., Yoshioka, T., Ushiyama, I. & Horikoshi, H. Characterization of new oral antidiabetic agent CS-045: studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37, 1549–1558 (1998).

    Article  Google Scholar 

  11. Kumar, S. et al. Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients. Diabetologia 39, 701–709 (1996).

    Article  CAS  Google Scholar 

  12. Nolan, J.J., Ludvik, B., Beerdsen P., Joyce, M. & Olefsky, J. Improvements in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med. 331, 1188–1193 (1994).

    Article  CAS  Google Scholar 

  13. Braissant, O., Foufelle, F., Scott, C., Dauce, M. & Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, β and γ in the adult rat. Endocrinology 137, 354–366 (1996).

    Article  CAS  Google Scholar 

  14. Fajas, L. et al. Organization, promoter analysis and expression of the human PPARγ gene. J. Biol. Chem. 272, 18779–18789 (1997).

    Article  CAS  Google Scholar 

  15. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650 (1990).

    Article  CAS  Google Scholar 

  16. Kliewer, S.A. et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA 91, 7355–7359 (1994).

    Article  CAS  Google Scholar 

  17. Spiegelman, B.M. PPARγ: adipogenic regulator and thiazolidinedione receptor. Diabetes 47, 507–514 (1998).

    Article  CAS  Google Scholar 

  18. Mangelsdorf, D.J. & Evans, R.M. The RXR heterodimers and orphan receptors. Cell 83, 841–850 (1995).

    Article  CAS  Google Scholar 

  19. Willson, T.M., Brown, P.J., Sternbach, D.D. & Henke, B.R. The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527–550 (2000).

    Article  CAS  Google Scholar 

  20. Harris, P.K. & Kletzien, R.F. Localization of a pioglitazone response element in the adipocyte fatty acid-binding protein gene. Mol. Pharamacol. 45, 439–445 (1994).

    CAS  Google Scholar 

  21. Auboeuf, D. et al. Tissue distribution and quantification of the expression of PPARs and LXRα in humans: no alterations in adipose tissue of obese and NIDDM patients. Diabetes 48, 1319–1327 (1997).

    Article  Google Scholar 

  22. Rosen, E.D. et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  Google Scholar 

  23. Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.B. & Spiegelman, B.M. mPPAR-γ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  Google Scholar 

  24. Vidal-Puig, A.J. et al. Peroxisome-proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocoticoids. J. Clin. Invest. 99, 2416–2422 (1997).

    Article  CAS  Google Scholar 

  25. Law, R.E. et al. Expression and function of PPARγ in rat and human vascular smooth muscle cells. Circulation 101, 1311–1318 (2000).

    Article  CAS  Google Scholar 

  26. Nagy, L., Tontonoz, P., Alvarez, J.G.A, Chen, H. & Evans, R.M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-γ. Cell 93, 229–240 (1998).

    Article  CAS  Google Scholar 

  27. Motojima, K., Passilly, P., Peters, J.M., Gonzalez, F.J. & Latruffe, N. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue- and inducer-specific manner. J. Biol. Chem. 273, 16710–16714 (1998).

    Article  CAS  Google Scholar 

  28. Schoonjans, K., Staels, B. & Auwerx, J. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302, 93–109 (1996).

    Article  CAS  Google Scholar 

  29. Sears, I.B., MacGinnitie, M.A., Kovacs, L.G. & Graves, R.A. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator activated receptor γ. Mol. Cell Biol. 16, 3410–3418 (1996).

    Article  CAS  Google Scholar 

  30. Tontonoz, P., Hu, E. & Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  Google Scholar 

  31. Young, P.W. et al. Repeat treatment of obese mice with BRL 49653, a new potent insulin sensitizer, enhances insulin action in white adipocytes: association with increased insulin binding and cell-surface GLUT4 as measured by photoaffinity labeling. Diabetes 44, 1087–1092 (1995).

    Article  CAS  Google Scholar 

  32. Wu, Z., Xie, Y., Bucher, N.L.R. & Farmer, S.R. PPARγ induces the insulin-dependent glucose transporter, GLUT4 in the absence of C/EBPα during the conversion of 3T3 fibroblasts into adipocytes. J. Clin. Invest. 101, 22–32 (1998).

    Article  CAS  Google Scholar 

  33. Loviscach, M. et al. Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 43, 304–311 (2000).

    Article  CAS  Google Scholar 

  34. Barak, Y. et al. PPARγ is required for placental, cardiac and adipose tissue development. Mol. Cell 4, 585–595 (1999).

    Article  CAS  Google Scholar 

  35. Bruning, J.C. et al. A muscle-specific insulin receptor knockout exhibits features of metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    Article  CAS  Google Scholar 

  36. Miles, P.D.G., Barak, Y., He, W., Evans, R.M. & Olefsky, J.M. Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency. J. Clin. Invest. 105, 287–292 (2000).

    Article  CAS  Google Scholar 

  37. Lee, Y.H., Giraud, J., Davis, R.J. & White, M.F. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J. Biol. Chem. 278, 2896–2902 (2003).

    Article  CAS  Google Scholar 

  38. Gavrilova, O. et al. Liver PPARγ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. (in the press).

  39. Way, J.M. et al. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferators activated receptor γ activation has coordinate effects on gene expression in multiple insulin sensitive tissues. Endocrinology 142, 1269–1277 (2001).

    Article  CAS  Google Scholar 

  40. Spiegelman, B.M. & Flier, J.S. Adipogenesis and obesity: rounding out the big picture. Cell 87, 377–389 (1996).

    Article  CAS  Google Scholar 

  41. Kahn, B.B. & Flier, J.S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).

    Article  CAS  Google Scholar 

  42. DeFronzo, R.A., Bonadonna, R.C. & Ferrannini, E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 15, 318–368 (1992).

    Article  CAS  Google Scholar 

  43. Kido, Y. et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J. Clin. Invest. 105, 199–205 (1999).

    Article  Google Scholar 

  44. Smith, D. et al. In vivo glucose metabolism in the awake rat: tracer and insulin clamp studies. Metabolism 36, 1176–1186 (1987).

    Google Scholar 

  45. O'Goman, S., Dagenais, N.A., Qain, M. & Marchuk, Y. Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl. Acad. Sci. USA 94, 14602–14607 (1997).

    Article  Google Scholar 

  46. Wilkes, J. & Bonen, A. Reduced insulin-stimulated glucose transport in denervated muscle is associated with impaired Akt-α activation. Am. J. Physiol. Endocrinol. Metab. 279, E912–E919 (2000).

    Article  CAS  Google Scholar 

  47. Revers, R.R., Fink, R., Griffin, J., Olefsky, J.M. & Kolterman, O.G. Influence of hyperglycemia on effects in type II diabetes. J. Clin. Invest. 73, 664–672 (1984).

    Article  CAS  Google Scholar 

  48. Frayn, K.N. & Maycock, P.F. Skeletal muscle triacylglycerol in the rat: methods for sampling and measurement, and studies of biological variability. J. Lipid Res. 21, 139–144 (1980).

    CAS  PubMed  Google Scholar 

  49. Steele, R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann. NY Acad. Sci. 82, 420–430 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Arimura and M. Nelson for assistance with animal care and husbandry; B. Hansen and E. Stevens for technical assistance with manuscript preparation; and C.R. Kahn for transgenic mice expressing MCK-Cre. These studies were supported by National Institutes of Health grants DK-33651 (J.M.O.), DK-60484 (A.L.H.), 2T32 DK07044-23 (W.H.) and DK57978-24 (R.M.E.), the National Institute for Diabetes, Digestive and Kidney Diseases, National Heart, Lung and Blood Institute grant HL56989 (R.M.E.), the Hilblom Foundation (J.M.O. and R.M.E.) and the Veterans Administration Research Service. R.M.E. is an investigator of the Howard Hughes Medical Institute at the Salk Institute for Biological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald M Evans or Jerrold Olefsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hevener, A., He, W., Barak, Y. et al. Muscle-specific Pparg deletion causes insulin resistance. Nat Med 9, 1491–1497 (2003). https://doi.org/10.1038/nm956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing