Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microtubules self-repair in response to mechanical stress

Abstract

Microtubules—which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport—can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules’ adaptation to mechanical stresses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubule bending device.
Figure 2: Microtubule softening on external constraint.
Figure 3: Microtubule mechanical recovery.
Figure 4: Microtubule self-healing.
Figure 5: Numerical simulations of microtubule deformation in response to local or global stiffness reduction.
Figure 6: Model of microtubule softening and self-repairing under mechanical stress.

Similar content being viewed by others

References

  1. Mimori-Kiyosue, Y. Shaping microtubules into diverse patterns: Molecular connections for setting up both ends. Cytoskeleton 68, 603–618 (2011).

    Article  CAS  Google Scholar 

  2. Van der Vaart, B., Akhmanova, A. & Straube, A. Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 37, 1007–1013 (2009).

    Article  CAS  Google Scholar 

  3. Schek, H. T., Gardner, M. K., Cheng, J., Odde, D. J. & Hunt, A. J. Microtubule assembly dynamics at the nanoscale. Curr. Biol. 17, 1445–1455 (2007).

    Article  CAS  Google Scholar 

  4. Dogterom, M. & Surrey, T. Microtubule organization in vitro. Curr. Opin. Cell Biol. 25, 23–29 (2013).

    Article  CAS  Google Scholar 

  5. Vignaud, T., Blanchoin, L. & Théry, M. Directed cytoskeleton self-organization. Trends Cell Biol. 22, 671–682 (2012).

    Article  CAS  Google Scholar 

  6. Howard, J. Elastic and damping forces generated by confined arrays of dynamic microtubules. Phys. Biol. 3, 54–66 (2006).

    Article  CAS  Google Scholar 

  7. Hawkins, T., Mirigian, M., Selcuk Yasar, M. & Ross, J. L. Mechanics of microtubules. J. Biomech. 43, 23–30 (2010).

    Article  Google Scholar 

  8. Mohrbach, H., Johner, A. & Kulić, I. M. Cooperative lattice dynamics and anomalous fluctuations of microtubules. Eur. Biophys. J. 41, 217–239 (2012).

    Article  CAS  Google Scholar 

  9. Gittes, F., Mickey, B., Nettleton, J. & Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923–934 (1993).

    Article  CAS  Google Scholar 

  10. Hoey, D. A., Downs, M. E. & Jacobs, C. R. The mechanics of the primary cilium: An intricate structure with complex function. J. Biomech. 45, 17–26 (2012).

    Article  Google Scholar 

  11. Pampaloni, F. et al. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc. Natl Acad. Sci. USA 103, 10248–10253 (2006).

    Article  CAS  Google Scholar 

  12. Sui, H. & Downing, K. H. Structural basis of interprotofilament interaction and lateral deformation of microtubules. Structure 18, 1022–1031 (2010).

    Article  CAS  Google Scholar 

  13. Mandelkow, E., Schultheiss, R., Rapp, R., Müller, M. & Mandelkow, E. On the surface lattice of microtubules: Helix starts, protofilament number, seam, and handedness. J. Cell Biol. 102, 1067–1073 (1986).

    Article  CAS  Google Scholar 

  14. Kis, A. et al. Nanomechanics of microtubules. Phys. Rev. Lett. 89, 248101 (2002).

    Article  CAS  Google Scholar 

  15. Díaz, J. F., Barasoain, I. & Andreu, J. M. Fast kinetics of Taxol binding to microtubules. Effects of solution variables and microtubule-associated proteins. J. Biol. Chem. 278, 8407–8419 (2003).

    Article  Google Scholar 

  16. Davis, L. J., Odde, D. J., Block, S. M. & Gross, S. P. The importance of lattice defects in katanin-mediated microtubule severing in vitro. Biophys. J. 82, 2916–2927 (2002).

    Article  CAS  Google Scholar 

  17. Mohrbach, H. & Kulić, I. M. Motor driven microtubule shape fluctuations: Force from within the lattice. Phys. Rev. Lett. 99, 218102 (2007).

    Article  Google Scholar 

  18. Yvon, A. M. C., Gross, D. J. & Wadsworth, P. Antagonistic forces generated by myosin II and cytoplasmic dynein regulate microtubule turnover, movement, and organization in interphase cells. Proc. Natl Acad. Sci. USA 98, 8656–8661 (2001).

    Article  CAS  Google Scholar 

  19. Gupton, S. L., Salmon, W. C. & Waterman-Storer, C. M. Converging populations of f-actin promote breakage of associated microtubules to spatially regulate microtubule turnover in migrating cells. Curr. Biol. 12, 1891–1899 (2002).

    Article  CAS  Google Scholar 

  20. Mandato, C. A. & Bement, W. M. Actomyosin transports microtubules and microtubules control actomyosin recruitment during Xenopus oocyte wound healing. Curr. Biol. 13, 1096–1105 (2003).

    Article  CAS  Google Scholar 

  21. Brangwynne, C. P., Mackintosh, F. C. & Weitz, D. A. Force fluctuations and polymerization dynamics of intracellular microtubules. Proc. Natl Acad. Sci. USA 104, 16128–16133 (2007).

    Article  CAS  Google Scholar 

  22. Bicek, A. D. et al. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol. Biol. Cell 20, 2943–2953 (2009).

    Article  CAS  Google Scholar 

  23. Laan, L. et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148, 502–514 (2012).

    Article  CAS  Google Scholar 

  24. Goetz, J. G. et al. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep. 6, 799–808 (2014).

    Article  CAS  Google Scholar 

  25. Odde, D. J., Ma, L., Briggs, A. H., Demarco, A. & Kirschner, M. W. Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 3288, 3283–3288 (1999).

    Google Scholar 

  26. Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139, 417–434 (1997).

    Article  CAS  Google Scholar 

  27. Bicek, A. D., Tüzel, E., Kroll, D. M. & Odde, D. J. Analysis of microtubule curvature. Methods Cell Biol. 83, 237–268 (2007).

    Article  CAS  Google Scholar 

  28. Kurachi, M., Hoshi, M. & Tashiro, H. Buckling of a single microtubule by optical trapping forces: Direct measurement of microtubule rigidity. Cell Motil. Cytoskeleton 30, 221–228 (1995).

    Article  CAS  Google Scholar 

  29. Venier, P., Maggs, A. C., Carlier, M. F. & Pantaloni, D. Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J. Biol. Chem. 269, 13353–13360 (1994).

    CAS  Google Scholar 

  30. Portran, D., Gaillard, J., Vantard, M. & Théry, M. Quantification of MAP and molecular motor activities on geometrically controlled microtubule networks. Cytoskeleton 70, 12–23 (2013).

    Article  CAS  Google Scholar 

  31. Sangid, M. D. The physics of fatigue crack initiation. Int. J. Fatigue 57, 58–72 (2013).

    Article  CAS  Google Scholar 

  32. Chrétien, D., Metoz, F., Verde, F., Karsenti, E. & Wade, R. H. Lattice defects in microtubules: Protofilament numbers vary within individual microtubules. J. Cell Biol. 117, 1031–1040 (1992).

    Article  Google Scholar 

  33. Schaap, I. T., de Pablo, P. J. & Schmidt, C. F. Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy. Eur. Biophys. J. 33, 462–467 (2004).

    Article  CAS  Google Scholar 

  34. Janson, M. E. & Dogterom, M. A bending mode analysis for growing microtubules: Evidence for a velocity-dependent rigidity. Biophys. J. 87, 2723–2736 (2004).

    Article  CAS  Google Scholar 

  35. Brangwynne, C. P. et al. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173, 733–741 (2006).

    Article  CAS  Google Scholar 

  36. Krieg, M., Dunn, A. R. & Goodman, M. B. Mechanical control of the sense of touch by β-spectrin. Nature Cell Biol. 16, 224–233 (2014).

    Article  CAS  Google Scholar 

  37. Dye, R. B., Flicker, P. F., Lien, D. Y. & Williams, R. C. End-stabilized microtubules observed in vitro: Stability, subunit, interchange, and breakage. Cell Motil. Cytoskeleton 21, 171–186 (1992).

    Article  CAS  Google Scholar 

  38. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  CAS  Google Scholar 

  39. Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    Article  CAS  Google Scholar 

  40. Shelanski, M. L. Chemistry of the filaments and tubules of brain. J. Histochem. Cytochem. 21, 529–539 (1973).

    Article  CAS  Google Scholar 

  41. Malekzadeh-Hemmat, K., Gendry, P. & Launay, J. F. Rat pancreas kinesin: Identification and potential binding to microtubules. Cell. Mol. Biol. (Noisy-le-grand) 39, 279–285 (1993).

    CAS  Google Scholar 

  42. Hyman, A. et al. Preparation of modified tubulins. Methods Enzymol. 196, 478–485 (1991).

    Article  CAS  Google Scholar 

  43. Duffy, D. C., McDonald, J. C., Schueller, O. J. & Whitesides, G. M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  Google Scholar 

  44. Doedel, E. J. AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations (2007); http://www.macs.hw.ac.uk/~gabriel/auto07/auto.html

Download references

Acknowledgements

We thank D. Chrétien for interesting discussions about microtubule defects and M. Dogterom and T. Salmon for bringing to our attention the seminal work of R. Williams. This work has been supported by an HFSP funding to M.T. and M.V.N. (RGY0088/2012) and ERC funding to M.T. (Starting Grant 310472).

Author information

Authors and Affiliations

Authors

Contributions

L.S. performed all experiments with the help of J.G. K.J. and L.S. conceived and performed microtubule stiffness measurements. K.J. performed numerical simulations. L.S., L.B. and M.T. designed the experiments. L.S., K.J., L.B. and M.T. analysed data. M.V.N., L.B. and M.T. wrote the manuscript.

Corresponding authors

Correspondence to Laurent Blanchoin or Manuel Théry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2751 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2959 kb)

Supplementary Information

Supplementary Movie 2 (MOV 13935 kb)

Supplementary Information

Supplementary Movie 3 (MOV 4726 kb)

Supplementary Information

Supplementary Movie 4 (MOV 9467 kb)

Supplementary Information

Supplementary Movie 5 (MOV 13215 kb)

Supplementary Information

Supplementary Movie 6 (MOV 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaedel, L., John, K., Gaillard, J. et al. Microtubules self-repair in response to mechanical stress. Nature Mater 14, 1156–1163 (2015). https://doi.org/10.1038/nmat4396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing