Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Estimating the sources of motor errors for adaptation and generalization

Abstract

Motor adaptation is usually defined as the process by which our nervous system produces accurate movements while the properties of our bodies and our environment continuously change. Many experimental and theoretical studies have characterized this process by assuming that the nervous system uses internal models to compensate for motor errors. Here we extend these approaches and construct a probabilistic model that not only compensates for motor errors but estimates the sources of these errors. These estimates dictate how the nervous system should generalize. For example, estimated changes of limb properties will affect movements across the workspace but not movements with the other limb. We provide evidence that many movement-generalization phenomena emerge from a strategy by which the nervous system estimates the sources of our motor errors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulated intralimb generalization.
Figure 2: Simulated interlimb generalization.
Figure 3: Simulated Coriolis room generalization.
Figure 4: Simulated inertial perturbation generalization.
Figure 5: Comparison of aftereffects.

Similar content being viewed by others

References

  1. Conditt, M.A., Gandolfo, F. & Mussa-Ivaldi, F.A. The motor system does not learn the dynamics of the arm by rote memorization of past experience. J. Neurophysiol. 78, 554–560 (1997).

    Article  CAS  Google Scholar 

  2. Conditt, M.A. & Mussa-Ivaldi, F.A. Central representation of time during motor learning. Proc. Natl. Acad. Sci. USA 96, 11625–11630 (1999).

    Article  CAS  Google Scholar 

  3. Ahmed, A.A., Wolpert, D.M. & Flanagan, J.R. Flexible representations of dynamics are used in object manipulation. Curr. Biol. 18, 763–768 (2008).

    Article  CAS  Google Scholar 

  4. Cothros, N., Wong, J.D. & Gribble, P.L. Are there distinct neural representations of object and limb dynamics? Exp. Brain Res. 173, 689–697 (2006).

    Article  CAS  Google Scholar 

  5. Shadmehr, R. & Mussa-Ivaldi, F.A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    Article  CAS  Google Scholar 

  6. Criscimagna-Hemminger, S.E. et al. Learned dynamics of reaching movements generalize from dominant to nondominant arm. J. Neurophysiol. 89, 168–176 (2003).

    Article  Google Scholar 

  7. Sainburg, R.L. & Kalakanis, D. Differences in control of limb dynamics during dominant and nondominant arm reaching. J. Neurophysiol. 83, 2661–2675 (2000).

    Article  CAS  Google Scholar 

  8. Sainburg, R.L. Evidence for a dynamic-dominance hypothesis of handedness. Exp. Brain Res. 142, 241–258 (2002).

    Article  Google Scholar 

  9. Dizio, P. & Lackner, J.R. Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm. J. Neurophysiol. 74, 1787–1792 (1995).

    Article  CAS  Google Scholar 

  10. Lackner, J.R. & Dizio, P. Rapid adaptation to Coriolis force perturbations of arm trajectory. J. Neurophysiol. 72, 299–313 (1994).

    Article  CAS  Google Scholar 

  11. Lackner, J.R. & Dizio, P. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements. J. Neurophysiol. 80, 546–553 (1998).

    Article  CAS  Google Scholar 

  12. Wang, J. & Sainburg, R.L. Limitations in interlimb transfer of visuomotor rotations. Exp. Brain Res. 155, 1–8 (2004).

    Article  Google Scholar 

  13. Bock, O. Early stages of load compensation in human aimed arm movements. Behav. Brain Res. 55, 61–68 (1993).

    Article  CAS  Google Scholar 

  14. Krakauer, J.W., Ghilardi, M.F. & Ghez, C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat. Neurosci. 2, 1026–1031 (1999).

    Article  CAS  Google Scholar 

  15. Wang, J. & Sainburg, R.L. Interlimb transfer of novel inertial dynamics is asymmetrical. J. Neurophysiol. 92, 349–360 (2004).

    Article  Google Scholar 

  16. Lackner, J.R. & DiZio, P. Motor control and learning in altered dynamic environments. Curr. Opin. Neurobiol. 15, 653–659 (2005).

    Article  CAS  Google Scholar 

  17. Haruno, M., Wolpert, D.M. & Kawato, M. Mosaic model for sensorimotor learning and control. Neural Comput. 13, 2201–2220 (2001).

    Article  CAS  Google Scholar 

  18. Schaal, S. & Schweighofer, N. Computational motor control in humans and robots. Curr. Opin. Neurobiol. 15, 675–682 (2005).

    Article  CAS  Google Scholar 

  19. Wolpert, D.M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Netw. 11, 1317–1329 (1998).

    Article  CAS  Google Scholar 

  20. Shadmehr, R. & Moussavi, Z.M. Spatial generalization from learning dynamics of reaching movements. J. Neurosci. 20, 7807–7815 (2000).

    Article  CAS  Google Scholar 

  21. Malfait, N., Shiller, D.M. & Ostry, D.J. Transfer of motor learning across arm configurations. J. Neurosci. 22, 9656–9660 (2002).

    Article  CAS  Google Scholar 

  22. Malfait, N., Gribble, P.L. & Ostry, D.J. Generalization of motor learning based on multiple field exposures and local adaptation. J. Neurophysiol. 93, 3327–3338 (2005).

    Article  Google Scholar 

  23. Krakauer, J.W. et al. Learning of visuomotor transformations for vectorial planning of reaching trajectories. J. Neurosci. 20, 8916–8924 (2000).

    Article  CAS  Google Scholar 

  24. Malfait, N. & Ostry, D.J. Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? J. Neurosci. 24, 8084–8089 (2004).

    Article  CAS  Google Scholar 

  25. Burgess, J.K., Bareither, R. & Patton, J.L. Single limb performance following contralateral bimanual limb training. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 347–355 (2007).

    Article  Google Scholar 

  26. Laszlo, J.I., Baguley, R.A. & Bairstow, P.J. Bilateral transfer in tapping skill in the absence of peripheral information. J. Mot. Behav. 2, 261–271 (1970).

    Article  CAS  Google Scholar 

  27. Bagesteiro, L.B. & Sainburg, R.L. Handedness: dominant arm advantages in control of limb dynamics. J. Neurophysiol. 88, 2408–2421 (2002).

    Article  Google Scholar 

  28. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  29. Ma, W.J. et al. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    Article  CAS  Google Scholar 

  30. Wolpert, D.M., Ghahramani, Z. & Jordan, M.I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  CAS  Google Scholar 

  31. Kording, K.P. & Wolpert, D.M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    Article  Google Scholar 

  32. Ernst, M.O. & Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

    Article  CAS  Google Scholar 

  33. Ernst, M.O. & Bulthoff, H.H. Merging the senses into a robust percept. Trends Cogn. Sci. 8, 162–169 (2004).

    Article  Google Scholar 

  34. Yuille, A. & Kersten, D. Vision as Bayesian inference: analysis by synthesis? Trends Cogn. Sci. 10, 301–308 (2006).

    Article  Google Scholar 

  35. Kording, K.P. et al. Causal inference in multisensory perception. PLoS ONE 2, e943 (2007).

    Article  Google Scholar 

  36. Weiss, Y., Simoncelli, E.P. & Adelson, E.H. Motion illusions as optimal percepts. Nat. Neurosci. 5, 598–604 (2002).

    Article  CAS  Google Scholar 

  37. Tenenbaum, J.B., Griffiths, T.L. & Kemp, C. Theory-based Bayesian models of inductive learning and reasoning. Trends Cogn. Sci. 10, 309–318 (2006).

    Article  Google Scholar 

  38. Tong, C., Wolpert, D.M. & Flanagan, J.R. Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. J. Neurosci. 22, 1108–1113 (2002).

    Article  CAS  Google Scholar 

  39. Kording, K.P., Tenenbaum, J.B. & Shadmehr, R. The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat. Neurosci. 10, 779–786 (2007).

    Article  CAS  Google Scholar 

  40. Hogan, N. An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 (1984).

    Article  CAS  Google Scholar 

  41. Uno, Y., Kawato, M. & Suzuki, R. Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol. Cybern. 61, 89–101 (1989).

    Article  CAS  Google Scholar 

  42. Chib, V.S. et al. Haptic identification of surfaces as fields of force. J. Neurophysiol. 95, 1068–1077 (2006).

    Article  Google Scholar 

  43. Todorov, E. & Jordan, M.I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).

    Article  CAS  Google Scholar 

  44. Izawa, J. et al. Motor adaptation as a process of reoptimization. J. Neurosci. 28, 2883–2891 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Mussa-Ivaldi, J. Patton, R. Shadmehr and C. Ghez for helpful discussions. This work has been supported by the US National Institutes of Health (grant RO1 NS057814-01) and by the Falk Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Berniker.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 71 kb)

Supplementary Software (ZIP)

Supplementary Software (ZIP 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berniker, M., Kording, K. Estimating the sources of motor errors for adaptation and generalization. Nat Neurosci 11, 1454–1461 (2008). https://doi.org/10.1038/nn.2229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing