Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology

Abstract

The neurodevelopmental disorder Rett syndrome (RTT) is caused by sporadic mutations in the transcriptional factor methyl-CpG–binding protein 2 (MeCP2). Although it is thought that the primary cause of RTT is cell autonomous, resulting from a lack of functional MeCP2 in neurons, whether non–cell autonomous factors contribute to the disease is unknown. We found that the loss of MeCP2 occurs not only in neurons but also in glial cells of RTT brains. Using an in vitro co-culture system, we found that mutant astrocytes from a RTT mouse model, and their conditioned medium, failed to support normal dendritic morphology of either wild-type or mutant hippocampal neurons. Our studies suggest that astrocytes in the RTT brain carrying MeCP2 mutations have a non–cell autonomous effect on neuronal properties, probably as a result of aberrant secretion of soluble factor(s).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MeCP2 is present in all glial cell types in normal rat and mouse brains.
Figure 2: MeCP2 is detected in astrocytes in brain sections from MeCP2+/y, but not MeCP2−/y, mice.
Figure 3: Wild-type hippocampal neurons cocultured with cortical astrocytes from RTT mice have stunted dendrites.
Figure 4: Conditioned medium from Mecp2−/y astrocytes cannot support normal neuronal growth.
Figure 5: Altered morphology of wild-type neurons cultured with ACM from Mecp2−/y astrocytes is evident at the single cell level.

References

  1. Amir, R.E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG–binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Chahrour, M. & Zoghbi, H.Y. The story of Rett syndrome: from clinic to neurobiology. Neuron 56, 422–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Chandler, S.P., Guschin, D., Landsberger, N. & Wolffe, A.P. The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry 38, 7008–7018 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kriaucionis, S. & Bird, A. DNA methylation and Rett syndrome. Hum. Mol. Genet. 12, R221–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Harikrishnan, K.N. et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat. Genet. 37, 254–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Nan, X. et al. Transcriptional repression by the methyl-CpG–binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Fuks, F. et al. The methyl-CpG–binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. 278, 4035–4040 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Chen, W.G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Martinowich, K. et al. DNA methylation–related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890–893 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth and spine maturation. Neuron 52, 255–269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yasui, D.H. et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc. Natl. Acad. Sci. USA 104, 19416–19421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Young, J.I. et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG–binding protein 2. Proc. Natl. Acad. Sci. USA 102, 17551–17558 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, R.Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG–binding protein 2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet. 27, 327–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Guy, J., Hendrich, B., Holmes, M., Martin, J.E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Shahbazian, M. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Gemelli, T. et al. Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol. Psychiatry 59, 468–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Giacometti, E., Luikenhuis, S., Beard, C. & Jaenisch, R. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc. Natl. Acad. Sci. USA 104, 1931–1936 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kishi, N. & Macklis, J.D. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol. Cell. Neurosci. 27, 306–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong, D.D. Neuropathology of Rett syndrome. J. Child Neurol. 20, 747–753 (2005).

    Article  PubMed  Google Scholar 

  23. Belichenko, P.V., Oldfors, A., Hagberg, B. & Dahlstrom, A. Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. Neuroreport 5, 1509–1513 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Moretti, P. et al. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J. Neurosci. 26, 319–327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asaka, Y., Jugloff, D.G., Zhang, L., Eubanks, J.H. & Fitzsimonds, R.M. Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol. Dis. 21, 217–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Chao, H.T., Zoghbi, H.Y. & Rosenmund, C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron 56, 58–65 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dani, V.S. et al. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. USA 102, 12560–12565 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung, B.P. et al. The expression of methyl CpG binding factor MeCP2 correlates with cellular differentiation in the developing rat brain and in cultured cells. J. Neurobiol. 55, 86–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Lobsiger, C.S. & Cleveland, D.W. Glial cells as intrinsic components of non–cell autonomous neurodegenerative disease. Nat. Neurosci. 10, 1355–1360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thatcher, K.N. & LaSalle, J.M. Dynamic changes in histone H3 lysine 9 acetylation localization patterns during neuronal maturation require MeCP2. Epigenetics 1, 24–31 (2006).

    Article  PubMed  Google Scholar 

  31. Banker, G.A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209, 809–810 (1980).

    Article  CAS  PubMed  Google Scholar 

  32. Kaech, S. & Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. Control of synapse number by glia. Science 291, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Maragakis, N.J. & Rothstein, J.D. Glutamate transporters in neurologic disease. Arch. Neurol. 58, 365–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Antony, J.M. et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat. Neurosci. 7, 1088–1095 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Back, S.A. et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 11, 966–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Colantuoni, C. et al. Gene expression profiling in postmortem Rett syndrome brain: differential gene expression and patient classification. Neurobiol. Dis. 8, 847–865 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Saywell, V. et al. Brain magnetic resonance study of Mecp2 deletion effects on anatomy and metabolism. Biochem. Biophys. Res. Commun. 340, 776–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Viola, A., Saywell, V., Villard, L., Cozzone, P.J. & Lutz, N.W. Metabolic fingerprints of altered brain growth, osmoregulation and neurotransmission in a Rett syndrome model. PLoS ONE 2, e157 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jellinger, K., Armstrong, D., Zoghbi, H.Y. & Percy, A.K. Neuropathology of Rett syndrome. Acta Neuropathol 76, 142–158 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Armstrong, D., Dunn, J.K., Antalffy, B. & Trivedi, R. Selective dendritic alterations in the cortex of Rett syndrome. J. Neuropathol. Exp. Neurol. 54, 195–201 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Hanefeld, F. et al. Cerebral proton magnetic resonance spectroscopy in Rett syndrome. Neuropediatrics 26, 126–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Kitt, C.A. & Wilcox, B.J. Preliminary evidence for neurodegenerative changes in the substantia nigra of Rett syndrome. Neuropediatrics 26, 114–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Clement, A.M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Yamanaka, K. et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl. Acad. Sci. USA 105, 7594–7599 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McCarthy, K.D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, Z., Watanabe, M. & Nishiyama, A. Optimization of oligodendrocyte progenitor cell culture method for enhanced survival. J. Neurosci. Methods 149, 50–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Ballas, N. et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Grimes, J.A. et al. The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J. Biol. Chem. 275, 9461–9467 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Shechter, D., Dormann, H.L., Allis, C.D. & Hake, S.B. Extraction, purification and analysis of histones. Nat. Protoc. 2, 1445–1457 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Levine and L. Evans for providing the enriched glial cultures for the initial immunostaining analysis; P. Brehm, R. Goodman, T. Reese and G. Banker for valuable discussions about the results; and D.D. Lu and R. Spektor for technical assistance. This work was supported in part by a grant from the International Rett Syndrome Foundation to N.B. and a US National Institutes of Health grant to G.M. and N.B. G.M. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

N.B., D.T.L., C.G. and G.M. designed the experiments. N.B., D.T.L. and C.G. carried out the experiments. N.B., D.T.L. and G.M. wrote the paper. N.B. and G.M. supervised the project.

Corresponding author

Correspondence to Nurit Ballas.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 6169 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballas, N., Lioy, D., Grunseich, C. et al. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 12, 311–317 (2009). https://doi.org/10.1038/nn.2275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing