Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Myosin-dependent targeting of transmembrane proteins to neuronal dendrites

Abstract

The distinct electrical properties of axonal and dendritic membranes are largely a result of specific transport of vesicle-bound membrane proteins to each compartment. How this specificity arises is unclear because kinesin motors that transport vesicles cannot autonomously distinguish dendritically projecting microtubules from those projecting axonally. We hypothesized that interaction with a second motor might enable vesicles containing dendritic proteins to preferentially associate with dendritically projecting microtubules and avoid those that project to the axon. Here we show that in rat cortical neurons, localization of several distinct transmembrane proteins to dendrites is dependent on specific myosin motors and an intact actin network. Moreover, fusion with a myosin-binding domain from Melanophilin targeted Channelrhodopsin-2 specifically to the somatodendritic compartment of neurons in mice in vivo. Together, our results suggest that dendritic transmembrane proteins direct the vesicles in which they are transported to avoid the axonal compartment through interaction with myosin motors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myosin function is necessary for targeting of exogenous dendritic transmembrane proteins.
Figure 2: Myosin function is necessary for targeting of endogenous dendritic transmembrane proteins.
Figure 3: Knockdown of Myosin Va expression blocks dendritic targeting of GluR1-GFP.
Figure 4: Association with Myosin Va is sufficient for dendritic targeting.
Figure 5: Role of actin in dendritic localization.
Figure 6: Role of actin filaments in the initial targeting of GluR1 to dendrites.
Figure 7: Targeting ChR2 to dendrites of pyramidal neurons using a myosin-binding domain.

Similar content being viewed by others

References

  1. Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nat. Cell Biol. 5, 287–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Folsch, H., Ohno, H., Bonifacino, J.S. & Mellman, I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99, 189–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Burack, M.A., Silverman, M.A. & Banker, G. The role of selective transport in neuronal protein sorting. Neuron 26, 465–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Matsuda, S. et al. Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 57, 730–745 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Setou, M. et al. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Setou, M., Nakagawa, T., Seog, D.H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796–1802 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Chu, P.J., Rivera, J.F. & Arnold, D.B. A role for Kif17 in transport of Kv4.2. J. Biol. Chem. 281, 365–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaech, S., Fischer, M., Doll, T. & Matus, A. Isoform specificity in the relationship of actin to dendritic spines. J. Neurosci. 17, 9565–9572 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakata, T., Terada, S. & Hirokawa, N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659–674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Correia, S.S. et al. Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat. Neurosci. 11, 457–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Osterweil, E., Wells, D.G. & Mooseker, M.S. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329–338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Z. et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135, 535–548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheney, R.E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Lise, M.F. et al. Involvement of myosin Vb in glutamate receptor trafficking. J. Biol. Chem. 281, 3669–3678 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ruberti, F. & Dotti, C.G. Involvement of the proximal C terminus of the AMPA receptor subunit GluR1 in dendritic sorting. J. Neurosci. 20, RC78:1–5 (2000).

    Article  Google Scholar 

  17. Mercer, J.A., Seperack, P.K., Strobel, M.C., Copeland, N.G. & Jenkins, N.A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Sheng, M., Tsaur, M.L., Jan, Y.N. & Jan, L.Y. Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron 9, 271–284 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, C., Glover, G., Banker, G. & Amara, S.G. A novel sorting motif in the glutamate transporter excitatory amino acid transporter 3 directs its targeting in Madin-Darby canine kidney cells and hippocampal neurons. J. Neurosci. 22, 10643–10652 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Das, S.S. & Banker, G.A. The role of protein interaction motifs in regulating the polarity and clustering of the metabotropic glutamate receptor mGluR1a. J. Neurosci. 26, 8115–8125 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geething, N.C. & Spudich, J.A. Identification of a minimal myosin Va binding site within an intrinsically unstructured domain of melanophilin. J. Biol. Chem. 282, 21518–21528 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. West, A.E., Neve, R.L. & Buckley, K.M. Identification of a somatodendritic targeting signal in the cytoplasmic domain of the transferrin receptor. J. Neurosci. 17, 6038–6047 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosales, C.R., Osborne, K.D., Zuccarino, G.V., Scheiffele, P. & Silverman, M.A. A cytoplasmic motif targets neuroligin-1 exclusively to dendrites of cultured hippocampal neurons. Eur. J. Neurosci. 22, 2381–2386 (2005).

    Article  PubMed  Google Scholar 

  24. Bradke, F. & Dotti, C.G. Differentiated neurons retain the capacity to generate axons from dendrites. Curr. Biol. 10, 1467–1470 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Winckler, B., Forscher, P. & Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397, 698–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Passafaro, M. et al. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morris, R.L. & Hollenbeck, P.J. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell Biol. 131, 1315–1326 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Rivera, J.F., Ahmad, S., Quick, M.W., Liman, E.R. & Arnold, D.B. An evolutionarily conserved dileucine motif in Shal K+ channels mediates dendritic targeting. Nat. Neurosci. 6, 243–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Kaether, C., Skehel, P. & Dotti, C.G. Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol. Biol. Cell 11, 1213–1224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guillaud, L., Setou, M. & Hirokawa, N. KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J. Neurosci. 23, 131–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pollard, T.D., Selden, S.C. & Maupin, P. Interaction of actin filaments with microtubules. J. Cell Biol. 99, 33s–37s (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dehmelt, L. & Halpain, S. Actin and microtubules in neurite initiation: are MAPs the missing link? J. Neurobiol. 58, 18–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ali, M.Y. et al. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc. Natl. Acad. Sci. USA 104, 4332–4336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kural, C. et al. Tracking melanosomes inside a cell to study molecular motors and their interaction. Proc. Natl. Acad. Sci. USA 104, 5378–5382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bridgman, P.C. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J. Cell Biol. 146, 1045–1060 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baas, P.W., Deitch, J.S., Black, M.M. & Banker, G.A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335–8339 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dillman, J. F. 3rd, Dabney, L.P. & Pfister, K.K. Cytoplasmic dynein is associated with slow axonal transport. Proc. Natl. Acad. Sci. USA 93, 141–144 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, X.D. et al. The globular tail domain puts on the brake to stop the ATPase cycle of myosin Va. Proc. Natl. Acad. Sci. USA 105, 1140–1145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pranchevicius, M.C. et al. Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil. Cytoskeleton 65, 441–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Krementsov, D.N., Krementsova, E.B. & Trybus, K.M. Myosin V: regulation by calcium, calmodulin, and the tail domain. J. Cell Biol. 164, 877–886 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The TfR-GFP and JPA5-CD8 (G. Banker, Oregon Health Sciences University), NLG-HA (M. Silverman, Simon Fraser University), GluR1-GFP (R. Malinow, University of California at San Diego) and siRNA vector (J. Esteban, University of Michigan) plasmids and the antibodies to GluR1 (R. Wenthold, US National Institutes of Health–National Institute on Deafness and Other Communication Disorders) and EAAT3 (S. Amara, University of Pittsburgh) were gifts. The authors would like to thank E. Liman, N. Segil, D. McKemy and members of the Arnold lab for comments on the manuscript and S.H. Kwon for creating the illustrations. This work was supported by US National Institutes of Health grants NS-041963 and MH-071439 to D.B.A. and support from the Howard Hughes Medical Institute to K.S.

Author information

Authors and Affiliations

Authors

Contributions

D.B.A. and T.L.L. designed and T.L.L. generated chimeric and mutant constructs. D.B.A. and T.L.L. designed and T.L.L. performed experiments to test constructs in dissociated neuronal cultures; K.S. and T.M. designed and performed the slice experiments; D.B.A., T.L.L., T.M. and K.S. analyzed results; D.B.A., T.L.L. and K.S. wrote the paper; and D.B.A. supervised the project.

Corresponding author

Correspondence to Don B Arnold.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 (PDF 6202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, T., Mao, T., Svoboda, K. et al. Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat Neurosci 12, 568–576 (2009). https://doi.org/10.1038/nn.2318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing