Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Melanocortin signaling in the CNS directly regulates circulating cholesterol

Abstract

Cholesterol circulates in the blood in association with triglycerides and other lipids, and elevated blood low-density lipoprotein cholesterol carries a risk for metabolic and cardiovascular disorders, whereas high-density lipoprotein (HDL) cholesterol in the blood is thought to be beneficial. Circulating cholesterol is the balance among dietary cholesterol absorption, hepatic synthesis and secretion, and the metabolism of lipoproteins by various tissues. We found that the CNS is also an important regulator of cholesterol in rodents. Inhibiting the brain's melanocortin system by pharmacological, genetic or endocrine mechanisms increased circulating HDL cholesterol by reducing its uptake by the liver independent of food intake or body weight. Our data suggest that a neural circuit in the brain is directly involved in the control of cholesterol metabolism by the liver.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ghrelin and melanocortin action in the CNS control of plasma HDL-C.
Figure 2: Altered plasma cholesterol in mutant mice deficient for ghrelin or melanocortin signaling.
Figure 3: Gut hormones and melanocortin action in the CNS modulates hepatic HDL-C re-uptake pathways independent of food intake.
Figure 4: Effect of the gut hormone ghrelin and melanocortin action in the CNS on the hepatic gene expression of components of cholesterol synthesis pathway.
Figure 5: Animal models with increased susceptibility to diet-induced obesity and decreased hypothalamic melanocortin signaling have increased HDL-C.

Similar content being viewed by others

References

  1. Grundy, S.M. Metabolic syndrome: a multiplex cardiovascular risk factor. J. Clin. Endocrinol. Metab. 92, 399–404 (2007).

    Article  CAS  Google Scholar 

  2. Cummings, D.E. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav. 89, 71–84 (2006).

    Article  CAS  Google Scholar 

  3. Cowley, M.A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    Article  CAS  Google Scholar 

  4. Cone, R.D. Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006).

    Article  CAS  Google Scholar 

  5. Vaisse, C. et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 253–262 (2000).

    Article  CAS  Google Scholar 

  6. Ford, E.S., Giles, W.H. & Dietz, W.H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. J. Am. Med. Assoc. 287, 356–359 (2002).

    Article  Google Scholar 

  7. Tschöp, M., Smiley, D.L. & Heiman, M.L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  Google Scholar 

  8. Ma, X., Bruning, J. & Ashcroft, F.M. Glucagon-like peptide 1 stimulates hypothalamic proopiomelanocortin neurons. J. Neurosci. 27, 7125–7129 (2007).

    Article  CAS  Google Scholar 

  9. Pocai, A., Obici, S., Schwartz, G.J. & Rossetti, L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 1, 53–61 (2005).

    Article  CAS  Google Scholar 

  10. Sutton, G.M. et al. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors. Endocrinology 147, 2183–2196 (2006).

    Article  CAS  Google Scholar 

  11. Chen, A.S. et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26, 97–102 (2000).

    Article  CAS  Google Scholar 

  12. Schoonjans, K. et al. Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Rep. 3, 1181–1187 (2002).

    Article  CAS  Google Scholar 

  13. Lambert, G. et al. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem. 278, 2563–2570 (2003).

    Article  CAS  Google Scholar 

  14. Cettour-Rose, P. & Rohner-Jeanrenaud, F. The leptin-like effects of 3-d peripheral administration of a melanocortin agonist are more marked in genetically obese Zucker (fa/fa) than in lean rats. Endocrinology 143, 2277–2283 (2002).

    Article  CAS  Google Scholar 

  15. Blüher, S. et al. Responsiveness to peripherally administered melanocortins in lean and obese mice. Diabetes 53, 82–90 (2004).

    Article  Google Scholar 

  16. Enriori, P.J. et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 5, 181–194 (2007).

    Article  CAS  Google Scholar 

  17. Rigotti, A. et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc. Natl. Acad. Sci. USA 94, 12610–12615 (1997).

    Article  CAS  Google Scholar 

  18. Varban, M.L. et al. Targeted mutation reveals a central role for SR-BI in hepatic selective uptake of high density lipoprotein cholesterol. Proc. Natl. Acad. Sci. USA 95, 4619–4624 (1998).

    Article  CAS  Google Scholar 

  19. Tondu, A.L. et al. Insulin and angiotensin II induce the translocation of scavenger receptor class B, type I from intracellular sites to the plasma membrane of adipocytes. J. Biol. Chem. 280, 33536–33540 (2005).

    Article  CAS  Google Scholar 

  20. Shetty, S., Eckhardt, E.R., Post, S.R. & van der Westhuyzen, D.R. Phosphatidylinositol-3-kinase regulates scavenger receptor class B type I subcellular localization and selective lipid uptake in hepatocytes. Arterioscler. Thromb. Vasc. Biol. 26, 2125–2131 (2006).

    Article  CAS  Google Scholar 

  21. Ginsberg, H.N. Insulin resistance and cardiovascular disease. J. Clin. Invest. 106, 453–458 (2000).

    Article  CAS  Google Scholar 

  22. Arai, T. et al. Increased plasma cholesteryl ester transfer protein in obese subjects. A possible mechanism for the reduction of serum HDL cholesterol levels in obesity. Arterioscler. Thromb. 14, 1129–1136 (1994).

    Article  CAS  Google Scholar 

  23. Gruen, M.L. et al. Persistence of high density lipoprotein particles in obese mice lacking apolipoprotein A-I. J. Lipid Res. 46, 2007–2014 (2005).

    Article  CAS  Google Scholar 

  24. Lundåsen, T., Liao, W., Angelin, B. & Rudling, M. Leptin induces the hepatic high density lipoprotein receptor scavenger receptor B type I (SR-BI) but not cholesterol 7alpha-hydroxylase (Cyp7a1) in leptin-deficient (ob/ob) mice. J. Biol. Chem. 278, 43224–43228 (2003).

    Article  Google Scholar 

  25. Silver, D.L., Jiang, X.C. & Tall, A.R. Increased high density lipoprotein (HDL), defective hepatic catabolism of ApoA-I and ApoA-II, and decreased ApoA-I mRNA in ob/ob mice. Possible role of leptin in stimulation of HDL turnover. J. Biol. Chem. 274, 4140–4146 (1999).

    Article  CAS  Google Scholar 

  26. Silver, D.L., Wang, N. & Tall, A.R. Defective HDL particle uptake in ob/ob hepatocytes causes decreased recycling, degradation, and selective lipid uptake. J. Clin. Invest. 105, 151–159 (2000).

    Article  CAS  Google Scholar 

  27. Rader, D.J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest. 116, 3090–3100 (2006).

    Article  CAS  Google Scholar 

  28. Hasty, A.H. et al. Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J. Biol. Chem. 276, 37402–37408 (2001).

    Article  CAS  Google Scholar 

  29. Huby, T. et al. Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues. J. Clin. Invest. 116, 2767–2776 (2006).

    Article  CAS  Google Scholar 

  30. Zhang, Y. et al. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 115, 2870–2874 (2005).

    Article  CAS  Google Scholar 

  31. Engelking, L.J. et al. Schoenheimer effect explained—feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J. Clin. Invest. 115, 2489–2498 (2005).

    Article  CAS  Google Scholar 

  32. Horton, J.D., Goldstein, J.L. & Brown, M.S. SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb. Symp. Quant. Biol. 67, 491–498 (2002).

    Article  CAS  Google Scholar 

  33. Cummings, D.E. & Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Invest. 117, 13–23 (2007).

    Article  CAS  Google Scholar 

  34. Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S. & Schwartz, M.W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  Google Scholar 

  35. Coll, A.P., Farooqi, I.S. & O′Rahilly, S. The hormonal control of food intake. Cell 129, 251–262 (2007).

    Article  CAS  Google Scholar 

  36. Lowell, B.B. & Spiegelman, B.M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000).

    Article  CAS  Google Scholar 

  37. Ahrén, B. Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43, 393–410 (2000).

    Article  Google Scholar 

  38. Castañeda, T.R. et al. Obesity and the neuroendocrine control of energy homeostasis: the role of spontaneous locomotor activity. J. Nutr. 135, 1314–1319 (2005).

    Article  Google Scholar 

  39. Lam, T.K. et al. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nat. Med. 13, 171–180 (2007).

    Article  CAS  Google Scholar 

  40. Nogueiras, R. et al. The central melanocortin system directly controls peripheral lipid metabolism. J. Clin. Invest. 117, 3475–3488 (2007).

    Article  CAS  Google Scholar 

  41. Schnölzer, M., Alewood, P., Jones, A., Alewood, D. & Kent, S.B. In situ neutralization in Boc-chemistry solid-phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int. J. Pept. Protein Res. 40, 180–193 (1992).

    Article  Google Scholar 

  42. Pittman, R.C., Knecht, T.P., Rosenbaum, M.S. & Taylor, C.A. Jr. A nonendocytotic mechanism for the selective uptake of high-density lipoprotein–associated cholesterol esters. J. Biol. Chem. 262, 2443–2450 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institute of Health grants NIDDK56863 (S.C.W. and M.H.T.), 5R01DK077975 (M.H.T.), R01 DK076907 (D.Y.H.) and HL67093 (W.S.D.). S.M.H. is the recipient of a Scientist Development Award from the American Heart Association (#0635079N). S.M.H. is a recipient of a Basic Science Award (1-10-BS-72) from the American Diabetes Association.

Author information

Authors and Affiliations

Authors

Contributions

D.P.-T., S.M.H., J.B., R.N. and P.T.P. designed and performed most of the experiments and wrote the manuscript. J.L.T. performed experiments, J.T.P. synthesized receptor ligands and A.A.B., S.C.B. and M.W.S. generated mouse models. N.G. carried out FPLC analyses. W.S.D. performed lipoprotein electrophoresis, E.G. and H.W.-P. carried out in vivo experiments, gene expression, inmunoblots and inmunoassays, M.A. performed surgical procedures and S.C.W. interpreted data and co-wrote the manuscript. R.D.D., D.Y.H. and M.H.T. conceptualized, analyzed and interpreted all studies and co-wrote the manuscript.

Corresponding author

Correspondence to Matthias H Tschöp.

Ethics declarations

Competing interests

R.D.D. and M.H.T. are scientific advisors for and shareholders of Marcadia Biotech and Ambrx Inc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 1132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Tilve, D., Hofmann, S., Basford, J. et al. Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nat Neurosci 13, 877–882 (2010). https://doi.org/10.1038/nn.2569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing