Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Animal models of neuropsychiatric disorders

Abstract

Modeling of human neuropsychiatric disorders in animals is extremely challenging given the subjective nature of many symptoms, the lack of biomarkers and objective diagnostic tests, and the early state of the relevant neurobiology and genetics. Nonetheless, progress in understanding pathophysiology and in treatment development would benefit greatly from improved animal models. Here we review the current state of animal models of mental illness, with a focus on schizophrenia, depression and bipolar disorder. We argue for areas of focus that might increase the likelihood of creating more useful models, at least for some disorders, and for explicit guidelines when animal models are reported.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kessler, R.C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

    Article  Google Scholar 

  2. Kessler, R.C. et al. Age of onset of mental disorders: a review of recent literature. Curr. Opin. Psychiatry 20, 359–364 (2007).

    Article  Google Scholar 

  3. World Health Organization. World Health Report 2001 (World Health Organization, Geneva, 2001).

  4. Nestler, E.J., Hyman, S.E. & Malenka, R.C. Molecular Neuropharmacology: a Foundation for Clinical Neuroscience, 2nd edn (McGraw-Hill, New York, 2009).

    Google Scholar 

  5. Markou, A., Chimmulera, C., Geyer, M.A., Tricklebank, M. & Steckler, T. Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34, 74–89 (2009).

    Article  CAS  Google Scholar 

  6. Diagnostic and Statistical Manual of Mental Disorders. 4th edn, text revision (American Psychiatric Association Press, Washington, DC, 2000).

  7. Hyman, S.E. The diagnosis of mental disorders: the problem of reification. Annu. Rev. Clin. Psychol. 6, 155–179 (2010).

    Article  Google Scholar 

  8. Götz, J. & Ittner, L.M. Animal models of Alzheimer's disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544 (2008).

    Article  Google Scholar 

  9. Morrissette, D.A., Parachikova, A., Green, K.N., & LaFerla, F.M. . Relevance of transgenic mouse models to human Alzheimer disease. J. Biol. Chem. 284, 6033–6037 (2009).

    Article  CAS  Google Scholar 

  10. Krishnan, V. & Nestler, E.J. Molecular neurobiology of depression. Nature 455, 894–902 (2008).

    Article  CAS  Google Scholar 

  11. Welch, J.M. et al. Cortico-striatal synaptic defects and OCD-like behaviors in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    Article  CAS  Google Scholar 

  12. Chen, S.-K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    Article  CAS  Google Scholar 

  13. Shahbazian, M. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35, 243–254 (2002).

    Article  CAS  Google Scholar 

  14. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  CAS  Google Scholar 

  15. Jamain, S. et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl. Acad. Sci. USA 105, 1710–1715 (2008).

    Article  CAS  Google Scholar 

  16. Morrow, E.M. et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223 (2008).

    Article  CAS  Google Scholar 

  17. Moy, S.S. & Nadler, J.J. Advances in behavioral genetics: mouse models of autism. Mol. Psychiatry 13, 4–26 (2008).

    Article  CAS  Google Scholar 

  18. Buxbaum, J.D. Multiple rare variants in the etiology of autism spectrum disorders. Dialogues Clin. Neurosci. 11, 35–43 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Etherton, M.R., Blaiss, C.A., Powell, C.M. & Sudhof, T.C. Mouse neurexin-1 alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc. Natl. Acad. Sci. USA 106, 17998–18003 (2009).

    Article  CAS  Google Scholar 

  20. Silverman, J.L., Yang, M., Lord, C. & Crawley, J.N. Behavioral phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 11, 490–502 (2010).

    Article  CAS  Google Scholar 

  21. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  Google Scholar 

  22. Chadman, K.K., Yang, M. & Crawley, J.N. Criteria for validating mouse models of psychiatric diseases. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 1–11 (2009).

    Article  Google Scholar 

  23. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

  24. Aguzzi, A., Sigurdson, C. & Heikenwaelder, M. Molecular mechanisms of prion pathogenesis. Annu. Rev. Pathol. 3, 11–40 (2008).

    Article  CAS  Google Scholar 

  25. Green, J.G. et al. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I. Arch. Gen. Psychiatry 67, 113–123 (2010).

    Article  Google Scholar 

  26. Saha, S., Chant, D., Welham, J. & McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2, e141 (2005).

    Article  Google Scholar 

  27. Tamminga, C.A. The neurobiology of cognition in schizophrenia. J. Clin. Psychiatry 67 Suppl 9, 9–13 (2006).

    CAS  PubMed  Google Scholar 

  28. Keefe, R.S.E. et al. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE trial. Arch. Gen. Psychiatry 64, 633–647 (2007).

    Article  CAS  Google Scholar 

  29. Swerdlow, N.R., Weber, M., Qu, Y., Light, G.A. & Braff, D.L. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl.) 199, 331–388 (2008).

    Article  CAS  Google Scholar 

  30. Cannon, T.D. et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc. Natl. Acad. Sci. USA 99, 3228–3233 (2002).

    Article  CAS  Google Scholar 

  31. Lewis, D.A. & Sweet, R.A. Schizophrenia from a neural circuitry perspective: advancing toward rational pharmacological therapies. J. Clin. Invest. 119, 706–716 (2009).

    Article  CAS  Google Scholar 

  32. Lewis, D.A. & Moghaddam, B. Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric adic and glutamate alterations. Arch. Neurol. 63, 1372–1376 (2006).

    Article  Google Scholar 

  33. Kegeles, L.S. et al. Increased synaptic dopamine function in associate regions of the striatum in schizophrenia. Arch. Gen. Psychiatry 67, 231–239 (2010).

    Article  CAS  Google Scholar 

  34. Arguello, P.A., Markx, S., Gogos, J.A. & Kraiorgou, M. Development of animal models for schizophrenia. Dis. Model Mech 3, 22–26 (2010).

    Article  CAS  Google Scholar 

  35. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008).

    Article  CAS  Google Scholar 

  36. Green, T. et al. Psychiatric disorders and intellectual functioning throughout development in velocardiofacial (22q11.2 deletion) syndrome. J. Am. Acad. Child Adolesc. Psychiatry 48, 1060–1068 (2009).

    Article  Google Scholar 

  37. Karayiorgou, M. Simon, T.J., & Gogos, J.A. 22q11.2 microdeletions:linking DNA structural variation to brain dysfunction and schizophrenia. Nat. Rev. Neurosci. 11, 402–416 (2010).

    Article  CAS  Google Scholar 

  38. Pletnikov, M.V. et al. Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Mol. Psychiatry 13, 173–186 (2008).

    Article  CAS  Google Scholar 

  39. Brandon, N.J. et al. Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci. 29, 12768–12775 (2009).

    Article  CAS  Google Scholar 

  40. Diaz-Asper, C.M. et al. Genetic variation in catechol-O-methyltransferase: effects on working memory in schizophrenic patients, their siblings, and healthy controls. Biol. Psychiatry 63, 72–79 (2008).

    Article  CAS  Google Scholar 

  41. Allen, N.C. et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the Sz database. Nat. Genet. 40, 827–834 (2008).

    Article  CAS  Google Scholar 

  42. Barnett, J.H., Scoriels, L. & Munafo, M.R. Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol. Psychiatry 64, 137–144 (2008).

    Article  CAS  Google Scholar 

  43. Patterson, P.H. Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav. Brain Res. 204, 313–321 (2009).

    Article  CAS  Google Scholar 

  44. Belforte, J.E. et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13, 76–83 (2010).

    Article  CAS  Google Scholar 

  45. Kellendonk, C. et al. Tranient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49, 603–615 (2006).

    Article  CAS  Google Scholar 

  46. Simpson, E.H., Kellendonk, C. & Kandel, E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schziphrenia. Neuron 65, 585–596 (2010).

    Article  CAS  Google Scholar 

  47. Willner, P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52, 90–110 (2005).

    Article  CAS  Google Scholar 

  48. Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    Article  CAS  Google Scholar 

  49. Chuang, J.C. et al. A b3-adrenergic-leptin-melanocortin circuit regulates behavioral and metabolic changes induced by chronic stress. Biol. Psychiatry 67, 1075–1082 (2010).

    Article  CAS  Google Scholar 

  50. Meaney, M.J. Maternal care, gene expression and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 24, 1161–1192 (2001).

    Article  CAS  Google Scholar 

  51. Wallace, D.L. et al. CREB regulation of nucleus accumbens excitability mediates social isolation–induced behavioral deficits. Nat. Neurosci. 12, 200–209 (2009).

    Article  CAS  Google Scholar 

  52. Gourley, S.L., Kiraly, D.D., Howell, J.L., Olausson, P. & Taylor, J.R. Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol. Psychiatry 64, 884–890 (2008).

    Article  CAS  Google Scholar 

  53. Müller, M.B. & Holsboer, F. Mice with mutations in the HPA-system as models for symptoms of depression. Biol. Psychiatry 59, 1104–1115 (2006).

    Article  Google Scholar 

  54. Cryan, J.F., Markou, A. & Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol. Sci. 23, 238–245 (2002).

    Article  CAS  Google Scholar 

  55. Nestler, E.J. et al. Preclinical models: status of basic research in depression. Biol. Psychiatry 52, 503–528 (2002).

    Article  Google Scholar 

  56. Maier, S.F. & Watkins, L.R. Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin and corticotropin-releasing factor. Neurosci. Biobehav. Rev. 29, 829–841 (2005).

    Article  CAS  Google Scholar 

  57. Berton, O. & Nestler, E.J. New approaches to antidepressant drug discovery: beyond monoamines. Nat. Rev. Neurosci. 7, 137–151 (2006).

    Article  CAS  Google Scholar 

  58. Carlezon, W.A. Jr., Duman, R.S. & Nestler, E.J. The many faces of CREB. Trends Neurosci. 28, 436–445 (2005).

    Article  CAS  Google Scholar 

  59. Markou, A. Animal models of depression and antidepressant activity. Neurosci. Biobehav. Rev. 29, 501 (2005).

    Article  Google Scholar 

  60. Carlezon, W.A. Jr. & Chartoff, E.H. Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat. Protoc. 2, 2987–2995 (2007).

    Article  CAS  Google Scholar 

  61. Craddock, N. & Sklar, P. Genetics of bipolar disorder: successful start to a long journey. Trends Genet. 25, 99–105 (2009).

    Article  CAS  Google Scholar 

  62. Einat, H. & Manji, H.K. Cellular plasticity cascades: genes-to-behavior pathways in animal models of bipolar disorder. Biol. Psychiatry 59, 1160–1171 (2006).

    Article  CAS  Google Scholar 

  63. Belmaker, R.H. & Bersudsky, Y. Lithium-pilocarpine seizures as a model for lithium action in mania. Neurosci. Biobehav. Rev. 31, 843–849 (2007).

    Article  CAS  Google Scholar 

  64. Malkesman, O., Austin, D.R., Chen, G. & Manji, H.K. Reverse translational strategies for developing animal models of bipolar disorder. Dis. Model Mech. 2, 238–245 (2009).

    Article  CAS  Google Scholar 

  65. Prickaerts, J. et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J. Neurosci. 26, 9022–9029 (2006).

    Article  CAS  Google Scholar 

  66. Shaldubina, A., Agam, G. & Belmaker, R.H. The mechanism of lithium action: state of the art, ten years later. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 855–866 (2001).

    Article  CAS  Google Scholar 

  67. Beaulieu, J.M. et al. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132, 125–136 (2008).

    Article  CAS  Google Scholar 

  68. Roybal, K. et al. Mania-like behavior induced by disruption of CLOCK. Proc. Natl. Acad. Sci. USA 104, 6406–6411 (2007).

    Article  CAS  Google Scholar 

  69. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237–241 (2008).

  70. O'Donovan, M.C. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40, 1053–1055 (2008).

    Article  CAS  Google Scholar 

  71. Hyman, S.E. A glimmer of light for neuropsychiatric disorders. Nature 455, 890–893 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J Nestler.

Ethics declarations

Competing interests

The authors declare competing financial interests: details accompany the full-text HTML version of the paper at http://www.nature.com/natureneuroscience/.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestler, E., Hyman, S. Animal models of neuropsychiatric disorders. Nat Neurosci 13, 1161–1169 (2010). https://doi.org/10.1038/nn.2647

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing