Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Calmodulin as a direct detector of Ca2+ signals

Abstract

Many forms of signal transduction occur when Ca2+ enters the cytoplasm of a cell. It has been generally thought that there is a fast buffer that rapidly reduces the free Ca2+ level and that it is this buffered level of Ca2+ that triggers downstream biochemical processes, notably the activation of calmodulin (CaM) and the resulting activation of CaM-dependent enzymes. Given the importance of these transduction processes, it is crucial to understand exactly how Ca2+ activates CaM. We have determined the rate at which Ca2+ binds to CaM and found that Ca2+ binds more rapidly to CaM than to other Ca2+-binding proteins. This property of CaM and its high concentration support a new view of signal transduction: CaM directly intercepts incoming Ca2+ and sets the free Ca2+ level (that is, it strongly contributes to fast Ca2+ buffering) rather than responding to the lower Ca2+ level set by other buffers. This property is crucial for making CaM an efficient transducer. Our results also suggest that other Ca2+ binding proteins have a previously undescribed role in regulating the lifetime of Ca2+ bound to CaM and thereby setting the gain of signal transduction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ca2+ buffering by CaM and the different roles of CaM and CB.
Figure 2: Single-compartment simulations of Ca2+ dynamics in a dendritic spine of a hippocampal CA1 pyramidal cell containing 100 μM CaM and 30 μM calbindin.
Figure 3: Activation of CaM.

References

  1. Xia, Z. & Storm, D.R. The role of calmodulin as a signal integrator for synaptic plasticity. Nat. Rev. Neurosci. 6, 267–276 (2005).

    Article  CAS  Google Scholar 

  2. Brown, B.L., Walker, S.W. & Tomlinson, S. Calcium calmodulin and hormone secretion. Clin. Endocrinol. 23, 201–218 (1985).

    Article  CAS  Google Scholar 

  3. Bers, D.M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 70, 23–49 (2008).

    Article  CAS  Google Scholar 

  4. Kubota, Y., Putkey, J.A., Shouval, H.Z. & Waxham, M.N. IQ-motif proteins influence intracellular free Ca2+ in hippocampal neurons through their interactions with calmodulin. J. Neurophysiol. 99, 264–276 (2008).

    Article  CAS  Google Scholar 

  5. Linse, S., Helmersson, A. & Forsen, S. Calcium binding to calmodulin and its globular domains. J. Biol. Chem. 266, 8050–8054 (1991).

    CAS  PubMed  Google Scholar 

  6. Porumb, T. Determination of calcium-binding constants by flow dialysis. Anal. Biochem. 220, 227–237 (1994).

    Article  CAS  Google Scholar 

  7. Gaertner, T.R., Putkey, J.A. & Waxham, M.N. RC3/Neurogranin and Ca2+/calmodulin-dependent protein kinase II produce opposing effects on the affinity of calmodulin for calcium. J. Biol. Chem. 279, 39374–39382 (2004).

    Article  CAS  Google Scholar 

  8. Kubota, Y., Putkey, J.A. & Waxham, M.N. Neurogranin controls the spatiotemporal pattern of postsynaptic Ca2+/CaM signaling. Biophys. J. 93, 3848–3859 (2007).

    Article  CAS  Google Scholar 

  9. Nagerl, U.V., Novo, D., Mody, I. & Vergara, J.L. Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+). Biophys. J. 79, 3009–3018 (2000).

    Article  CAS  Google Scholar 

  10. Faas, G.C., Karacs, K., Vergara, J.L. & Mody, I. Kinetic properties of DM-nitrophen binding to calcium and magnesium. Biophys. J. 88, 4421–4433 (2005).

    Article  CAS  Google Scholar 

  11. Faas, G.C., Schwaller, B., Vergara, J.L. & Mody, I. Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol. 5, e311 (2007).

    Article  Google Scholar 

  12. Berggard, T. et al. Calbindin D28k exhibits properties characteristic of a Ca2+ sensor. J. Biol. Chem. 277, 16662–16672 (2002).

    Article  CAS  Google Scholar 

  13. Sabatini, B.L., Oertner, T.G. & Svoboda, K. The life cycle of Ca(2+) ions in dendritic spines. Neuron 33, 439–452 (2002).

    Article  CAS  Google Scholar 

  14. Cornelisse, L.N., van Elburg, R.A., Meredith, R.M., Yuste, R. & Mansvelder, H.D. High speed two-photon imaging of calcium dynamics in dendritic spines: consequences for spine calcium kinetics and buffer capacity. PLoS ONE 2, e1073 (2007).

    Article  Google Scholar 

  15. Biber, A., Schmid, G. & Hempel, K. Calmodulin content in specific brain areas. Exp. Brain Res. 56, 323–326 (1984).

    Article  CAS  Google Scholar 

  16. Banay-Schwartz, M., Kenessey, A., DeGuzman, T., Lajtha, A. & Palkovits, M. Protein content of various regions of rat brain and adult aging human brain. Age (Omaha) 15, 51–54 (1992).

    Article  CAS  Google Scholar 

  17. Muller, A. et al. Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons. J. Neurosci. 25, 558–565 (2005).

    Article  Google Scholar 

  18. Neher, E. & Augustine, G.J. Calcium gradients and buffers in bovine chromaffin cells. J. Physiol. (Lond.) 450, 273–301 (1992).

    Article  CAS  Google Scholar 

  19. Lee, S.H., Rosenmund, C., Schwaller, B. & Neher, E. Differences in Ca2+ buffering properties between excitatory and inhibitory hippocampal neurons from the rat. J. Physiol. 525, 405–418 (2000).

    Article  CAS  Google Scholar 

  20. Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).

    Article  CAS  Google Scholar 

  21. Meinrenken, C.J., Borst, J.G. & Sakmann, B. Calcium secretion coupling at calyx of held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    Article  CAS  Google Scholar 

  22. Putkey, J.A., Kleerekoper, Q., Gaertner, T.R. & Waxham, M.N. A new role for IQ motif proteins in regulating calmodulin function. J. Biol. Chem. 278, 49667–49670 (2003).

    Article  CAS  Google Scholar 

  23. Otmakhov, N., Griffith, L.C. & Lisman, J.E. Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J. Neurosci. 17, 5357–5365 (1997).

    Article  CAS  Google Scholar 

  24. Scheuss, V., Yasuda, R., Sobczyk, A. & Svoboda, K. Nonlinear [Ca2+] signaling in dendrites and spines caused by activity-dependent depression of Ca2+ extrusion. J. Neurosci. 26, 8183–8194 (2006).

    Article  CAS  Google Scholar 

  25. Lee, S.J., Escobedo-Lozoya, Y., Szatmari, E.M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    Article  CAS  Google Scholar 

  26. Bloodgood, B.L. & Sabatini, B.L. Neuronal activity regulates diffusion across the neck of dendritic spines. Science 310, 866–869 (2005).

    Article  CAS  Google Scholar 

  27. Nagerl, U.V. et al. Surviving granule cells of the sclerotic human hippocampus have reduced Ca(2+) influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy. J. Neurosci. 20, 1831–1836 (2000).

    Article  CAS  Google Scholar 

  28. Arnold, D.B. & Heintz, N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc. Natl. Acad. Sci. USA 94, 8842–8847 (1997).

    Article  CAS  Google Scholar 

  29. Kaplan, J.H. & Ellis-Davies, G.C. Photolabile chelators for the rapid photorelease of divalent cations. Proc. Natl. Acad. Sci. USA 85, 6571–6575 (1988).

    Article  CAS  Google Scholar 

  30. Peterson, B.Z., DeMaria, C.D., Adelman, J.P. & Yue, D.T. Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron 22, 549–558 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Adelman (The Vollum Institute) for purified CaM and mutants of CaM (CaMEF12 and CaMEF34), K. Baimbridge (University of Britsh Columbia) for purified calbindin and E.B.S. Faas (Syrinx Design) for help in designing the photodiode pre-amplifier. J.E.L. would like to thank W. Ross and I. Llano for conversations at the Marine Biological Laboratory Woods Hole that led to important insights into this problem. Supported by the US National Institutes of Health (NIH) grants NS027528, NS030549 and the Coelho Endowment to I.M., NIH grant DA027807 to J.E.L. and S.R., and the National Science Foundation grant NSF0642000 to S.R.

Author information

Authors and Affiliations

Authors

Contributions

G.C.F. was responsible for both theoretical and experimental concepts, experiments, data analysis and writing; J.E.L. and S.R. were responsible for theoretical concepts and writing; and I.M. was responsible for both theoretical and experimental concepts and writing. G.C.F., S.R., J.E.L. and I.M. together developed ideas about how the Ca2+ binding properties of multiple Ca2+ buffers could explain experimental results in dendritic spines.

Corresponding author

Correspondence to Guido C Faas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Data 1–6, Supplementary Table 1 and Supplementary Note (PDF 626 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faas, G., Raghavachari, S., Lisman, J. et al. Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci 14, 301–304 (2011). https://doi.org/10.1038/nn.2746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing