Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses

Abstract

As the neural network becomes wired, postsynaptic signaling molecules are thought to control the growth of dendrites and synapses. However, how these molecules are coordinated to sculpt postsynaptic structures is less well understood. We find that ephrin-B3, a transmembrane ligand for Eph receptors, functions postsynaptically as a receptor to transduce reverse signals into developing dendrites of mouse hippocampal neurons. Both tyrosine phosphorylation–dependent GRB4 SH2/SH3 adaptor-mediated signals and PSD-95–discs large–zona occludens-1 (PDZ) domain–dependent signals are required for inhibition of dendrite branching, whereas only PDZ interactions are necessary for spine formation and excitatory synaptic function. PICK1 and syntenin, two PDZ domain proteins, participate with ephrin-B3 in these postsynaptic activities. PICK1 has a specific role in spine and synapse formation, and syntenin promotes both dendrite pruning and synapse formation to build postsynaptic structures that are essential for neural circuits. The study thus dissects ephrin-B reverse signaling into three distinct intracellular pathways and protein–protein interactions that mediate the maturation of postsynaptic neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: eB3 is required for dendrite pruning and spine formation in hippocampal CA1 neurons.
Figure 2: eB3 is required and sufficient for excitatory synaptic function in hippocampal CA1 neurons.
Figure 3: eB3 tyrosine phosphorylation and PDZ binding are differentially required for dendrite morphogenesis and synaptic function.
Figure 4: PDZ binding of eB3 are required for synaptic function.
Figure 5: PICK1 and syntenin mediate eB3 reverse signaling through PDZ binding to control spine and synapse formation and synaptic function.
Figure 6: GRB4, PICK1 and syntenin mediated distinct reverse signaling to prune primary dendrites in cultured hippocampal neurons.
Figure 7: Association of eB3-PICK1 or eB3-Syn with downstream signaling molecules.

Similar content being viewed by others

References

  1. Ethell, I.M. & Pasquale, E.B. Molecular mechanisms of dendritic spine development and remodeling. Prog. Neurobiol. 75, 161–205 (2005).

    Article  CAS  Google Scholar 

  2. Parrish, J.Z., Emoto, K., Kim, M.D. & Jan, Y.N. Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu. Rev. Neurosci. 30, 399–423 (2007).

    Article  CAS  Google Scholar 

  3. Klein, R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat. Neurosci. 12, 15–20 (2009).

    Article  CAS  Google Scholar 

  4. Lai, K.O. & Ip, N.Y. Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr. Opin. Neurobiol. 19, 275–283 (2009).

    Article  CAS  Google Scholar 

  5. Cowan, C.A. & Henkemeyer, M. Ephrins in reverse, park and drive. Trends Cell Biol. 12, 339–346 (2002).

    Article  CAS  Google Scholar 

  6. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

    Article  CAS  Google Scholar 

  7. Holland, S.J. et al. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    Article  CAS  Google Scholar 

  8. Pasquale, E.B. Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38–52 (2008).

    Article  CAS  Google Scholar 

  9. Dalva, M.B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    Article  CAS  Google Scholar 

  10. Ethell, I.M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001–1013 (2001).

    Article  CAS  Google Scholar 

  11. Grunwald, I.C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    Article  CAS  Google Scholar 

  12. Henkemeyer, M., Itkis, O.S., Ngo, M., Hickmott, P.W. & Ethell, I.M. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J. Cell Biol. 163, 1313–1326 (2003).

    Article  CAS  Google Scholar 

  13. Bush, J.O. & Soriano, P. Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes Dev. 23, 1586–1599 (2009).

    Article  CAS  Google Scholar 

  14. Xu, N.J. & Henkemeyer, M. Ephrin-B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning. Nat. Neurosci. 12, 268–276 (2009).

    Article  CAS  Google Scholar 

  15. McClelland, A.C., Sheffler-Collins, S.I., Kayser, M.S. & Dalva, M.B. Ephrin-B1 and ephrin-B2 mediate EphB-dependent presynaptic development via syntenin-1. Proc. Natl. Acad. Sci. USA 106, 20487–20492 (2009).

    Article  CAS  Google Scholar 

  16. Contractor, A. et al. Trans-synaptic Eph receptor–ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    Article  CAS  Google Scholar 

  17. Lim, B.K., Matsuda, N. & Poo, M.M. Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo. Nat. Neurosci. 11, 160–169 (2008).

    Article  CAS  Google Scholar 

  18. Aoto, J. et al. Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation. J. Neurosci. 27, 7508–7519 (2007).

    Article  CAS  Google Scholar 

  19. McClelland, A.C., Hruska, M., Coenen, A.J., Henkemeyer, M. & Dalva, M.B. Trans-synaptic EphB2-ephrin-B3 interaction regulates excitatory synapse density by inhibition of postsynaptic MAPK signaling. Proc. Natl. Acad. Sci. USA 107, 8830–8835 (2010).

    Article  CAS  Google Scholar 

  20. Segura, I., Essmann, C.L., Weinges, S. & Acker-Palmer, A. Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat. Neurosci. 10, 301–310 (2007).

    Article  CAS  Google Scholar 

  21. Antion, M.D., Christie, L.A., Bond, A.M., Dalva, M.B. & Contractor, A. Ephrin-B3 regulates glutamate receptor signaling at hippocampal synapses. Mol. Cell. Neurosci. 45, 378–388 (2010).

    Article  CAS  Google Scholar 

  22. Bouzioukh, F. et al. Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation, but not long-term depression. J. Neurosci. 27, 11279–11288 (2007).

    Article  CAS  Google Scholar 

  23. Essmann, C.L. et al. Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors. Nat. Neurosci. 11, 1035–1043 (2008).

    Article  CAS  Google Scholar 

  24. Grunwald, I.C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat. Neurosci. 7, 33–40 (2004).

    Article  CAS  Google Scholar 

  25. Rodenas-Ruano, A., Perez-Pinzon, M.A., Green, E.J., Henkemeyer, M. & Liebl, D.J. Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Dev. Biol. 292, 34–45 (2006).

    Article  CAS  Google Scholar 

  26. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  27. Yokoyama, N. et al. Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29, 85–97 (2001).

    Article  CAS  Google Scholar 

  28. Dravis, C. et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev. Biol. 271, 272–290 (2004).

    Article  CAS  Google Scholar 

  29. Thakar, S., Chenaux, G. & Henkemeyer, M. Critical roles for EphB and ephrin-B bidirectional signaling in retinocollicular mapping. Nat. Commun. 2, 431 (2011).

    Article  Google Scholar 

  30. Hayashi, S. & McMahon, A.P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  Google Scholar 

  31. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  Google Scholar 

  32. Cowan, C.A. & Henkemeyer, M. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174–179 (2001).

    Article  CAS  Google Scholar 

  33. Citri, A. et al. Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression. J. Neurosci. 30, 16437–16452 (2010).

    Article  CAS  Google Scholar 

  34. Hirbec, H., Martin, S. & Henley, J.M. Syntenin is involved in the developmental regulation of neuronal membrane architecture. Mol. Cell. Neurosci. 28, 737–746 (2005).

    Article  CAS  Google Scholar 

  35. Nakamura, Y. et al. PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity. EMBO J. 30, 719–730 (2011).

    Article  CAS  Google Scholar 

  36. Grootjans, J.J., Reekmans, G., Ceulemans, H. & David, G. Syntenin-syndecan binding requires syndecan-synteny and the co-operation of both PDZ domains of syntenin. J. Biol. Chem. 275, 19933–19941 (2000).

    Article  CAS  Google Scholar 

  37. Lin, D., Gish, G.D., Songyang, Z. & Pawson, T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem. 274, 3726–3733 (1999).

    Article  CAS  Google Scholar 

  38. Torres, R. et al. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453–1463 (1998).

    Article  CAS  Google Scholar 

  39. Xu, J. & Xia, J. Structure and function of PICK1. Neurosignals 15, 190–201 (2007).

    Article  CAS  Google Scholar 

  40. Beekman, J.M. & Coffer, P.J. The ins and outs of syntenin, a multifunctional intracellular adaptor protein. J. Cell Sci. 121, 1349–1355 (2008).

    Article  CAS  Google Scholar 

  41. Ethell, I.M. & Yamaguchi, Y. Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J. Cell Biol. 144, 575–586 (1999).

    Article  CAS  Google Scholar 

  42. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 (1997).

    Article  CAS  Google Scholar 

  43. Jin, W. et al. Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J. Neurosci. 26, 2380–2390 (2006).

    Article  CAS  Google Scholar 

  44. Boukerche, H. et al. mda-9/Syntenin: a positive regulator of melanoma metastasis. Cancer Res. 65, 10901–10911 (2005).

    Article  CAS  Google Scholar 

  45. Zimmermann, P. et al. Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev. Cell 9, 377–388 (2005).

    Article  CAS  Google Scholar 

  46. Lin, Y.L., Lei, Y.T., Hong, C.J. & Hsueh, Y.P. Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. J. Cell Biol. 177, 829–841 (2007).

    Article  CAS  Google Scholar 

  47. Henderson, J.T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

    Article  CAS  Google Scholar 

  48. Takasu, M.A., Dalva, M.B., Zigmond, R.E. & Greenberg, M.E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002).

    Article  CAS  Google Scholar 

  49. Williams, S.E. et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39, 919–935 (2003).

    Article  CAS  Google Scholar 

  50. Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R. & Wearne, S.L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS ONE 3, e1997 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Sanes (Harvard University) for Thy1-GFP-M transgenic mice, G. Chenaux (University of Texas Southwestern Medical Center) for Efnb26FΔV mice, H. Zeng (Allen Institute for Brain Science) for CAGG-tdTomato transgenic mice, A. McMahon (Harvard University) for CAGG-Cre-ER™ transgenic mice, A. Bergemann (Mount Sinai Medical Center) for eB3 cDNA pEXPRmELF3, I.M. Ethell (University of California, Riverside) for HA-syndecan-2 plasmid, I. Bezprozvanny, B. Miller and A. Patel (University of Texas Southwestern) for electrophysiological recording setups and assistance with electrophysiology, and F. Sprouse (University of Texas Southwestern Medical Center) for genotyping. This research was supported by a US National Institutes of Health grant (R01 MH66332) to M.H.

Author information

Authors and Affiliations

Authors

Contributions

N.-J.X. generated Ephb3neo, Ephb33F, Ephb35F, Efnb3ΔV and Efnb33FΔV knock-in mice. N.-J.X. and S.S. performed the experiments. J.R.G. supervised the electrophysiological recording in brain slides. N.-J.X. and M.H. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Mark Henkemeyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 (PDF 1712 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, NJ., Sun, S., Gibson, J. et al. A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nat Neurosci 14, 1421–1429 (2011). https://doi.org/10.1038/nn.2931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing