Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Pattern and not magnitude of neural activity determines dendritic spine stability in awake mice

Abstract

The stability of dendritic spines in the neocortex is profoundly influenced by sensory experience, which determines the magnitude and pattern of neural firing. By optically manipulating the temporal structure of neural activity in vivo using channelrhodopsin-2 and repeatedly imaging dendritic spines along these stimulated neurons over a period of weeks, we show that the specific pattern, rather than the total amount of activity, determines spine stability in awake mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chr2-mediated and spontaneous activity in awake mice.
Figure 2: Spine stability is determined by the pattern of activity.

Similar content being viewed by others

References

  1. Holtmaat, A. & Svoboda, K. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  CAS  Google Scholar 

  2. Zuo, Y., Yang, G., Kwon, E. & Gan, W.B. Nature 436, 261–265 (2005).

    Article  CAS  Google Scholar 

  3. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hubener, M. Nature 457, 313–317 (2009).

    Article  CAS  Google Scholar 

  4. Trachtenberg, J.T. et al. Nature 420, 788–794 (2002).

    Article  CAS  Google Scholar 

  5. O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neuron 67, 1048–1061 (2010).

    Article  CAS  Google Scholar 

  6. Dantzker, J.L. & Callaway, E.M. Nat. Neurosci. 3, 701–707 (2000).

    Article  CAS  Google Scholar 

  7. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Nature 459, 698–702 (2009).

    Article  CAS  Google Scholar 

  8. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Trends Neurosci. 26, 360–368 (2003).

    Article  CAS  Google Scholar 

  9. Fiser, J., Chiu, C. & Weliky, M. Nature 431, 573–578 (2004).

    Article  CAS  Google Scholar 

  10. Linden, M.L., Heynen, A.J., Haslinger, R.H. & Bear, M.F. Nat. Neurosci. 12, 390–392 (2009).

    Article  CAS  Google Scholar 

  11. Komiyama, T. et al. Nature 464, 1182–1186 (2010).

    Article  CAS  Google Scholar 

  12. Thompson, W. Nature 302, 614–616 (1983).

    Article  CAS  Google Scholar 

  13. Zhang, J., Ackman, J.B., Xu, H.P. & Crair, M.C. Nat. Neurosci. 15, 298–307 (2012).

    Article  CAS  Google Scholar 

  14. Di Cristo, G. et al. Nat. Neurosci. 7, 1184–1186 (2004).

    Article  CAS  Google Scholar 

  15. Roberts, T.F., Tschida, K.A., Klein, M.E. & Mooney, R. Nature 463, 948–952 (2010).

    Article  CAS  Google Scholar 

  16. Arenkiel, B.R. et al. Neuron 54, 205–218 (2007).

    Article  CAS  Google Scholar 

  17. Feng, G. et al. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  18. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Neuron 56, 43–57 (2007).

    Article  CAS  Google Scholar 

  19. Kuhlman, S.J., Tring, E. & Trachtenberg, J.T. Nat. Neurosci. 14, 1121–1123 (2011).

    Article  CAS  Google Scholar 

  20. Holtmaat, A. et al. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  Google Scholar 

  21. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. Biomed. Eng. Online 2, 13 (2003).

    Article  Google Scholar 

  22. Holtmaat, A.J. et al. Neuron 45, 279–291 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank S.T. Carmichael for his help with quantitative real-time PCR, A. Silva for generously providing access to his two-photon microscope for some of these experiments, S. Kuhlman for her help with spike wave-form analysis, E. Ruthazer for critical comments on earlier versions of this manuscript and G. Feng (Massachusetts Institute of Technology) for generously supplying the Thy1-Chr2-YFP mice. This work was funded by grants from the US National Eye Institute (EY016052) and from the US National Institute for Mental Health (MH077972).

Author information

Authors and Affiliations

Authors

Contributions

R.M.W. conducted the longitudinal dendritic spine imaging experiments, analyzed the data and wrote the manuscript. E.T. conducted the awake, behaving cell-attached patch recordings. J.T.T. designed and supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Joshua T Trachtenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 3621 kb)

Supplementary Video 1

Video of head-restrained mouse maneuvering on a floating Styrofoam ball (MOV 3292 kb)

Supplementary Video 2

Video of a mouse wearing a head-fixed blue LED that is flashing at 2 Hz once every 2 seconds (MOV 3015 kb)

Supplementary Video 3

Video of a mouse wearing a head-fixed blue LED that is flashing at 10 Hz once every 10 seconds (MOV 3507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyatt, R., Tring, E. & Trachtenberg, J. Pattern and not magnitude of neural activity determines dendritic spine stability in awake mice. Nat Neurosci 15, 949–951 (2012). https://doi.org/10.1038/nn.3134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing