Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein kinase C acts as a molecular detector of firing patterns to mediate sensory gating in Aplysia

Abstract

Habituation of a behavioral response to a repetitive stimulus enables animals to ignore irrelevant stimuli and focus on behaviorally important events. In Aplysia, habituation is mediated by rapid depression of sensory synapses, which could leave an animal unresponsive to important repetitive stimuli, making it vulnerable to injury. We identified a form of plasticity that prevents synaptic depression depending on the precise stimulus strength. Burst-dependent protection from depression is initiated by trains of 2–4 action potentials and is distinct from previously described forms of synaptic enhancement. The blockade of depression is mediated by presynaptic Ca2+ influx and protein kinase C (PKC) and requires localization of PKC via a PDZ domain interaction with Aplysia PICK1. During protection from depression, PKC acts as a highly sensitive detector of the precise pattern of sensory neuron firing. Behaviorally, burst-dependent protection reduces habituation, enabling animals to maintain responsiveness to stimuli that are functionally important.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bursts of two to four spikes in presynaptic sensory neurons protect against development of HSD and partially reverse previously developed HSD.
Figure 2: Effect of BDP on sensory neuron synapses is stable, distinguishing BDP from PTP.
Figure 3: Initiation of BDP involves presynaptic Ca2+ influx.
Figure 4: Initiation of BDP involves PKC, but not CaMKII.
Figure 5: The Ca2+-activated PKC Apl-I interacts with the PDZ domain protein Aplysia PICK1.
Figure 6: BDP depends on PDZ domain interactions.
Figure 7: Bursts of spikes in siphon sensory neurons reduce habituation of siphon withdrawal response via a homosynaptic mechanism.

Similar content being viewed by others

References

  1. Byrne, J.H. Analysis of synaptic depression contributing to habituation of gill-withdrawal reflex in Aplysia californica. J. Neurophysiol. 48, 431–438 (1982).

    Article  CAS  Google Scholar 

  2. Eliot, L.S., Kandel, E.R. & Hawkins, R.D. Modulation of spontaneous transmitter release during depression and posttetanic potentiation of Aplysia sensory-motor neuron synapses isolated in culture. J. Neurosci. 14, 3280–3292 (1994).

    Article  CAS  Google Scholar 

  3. Castellucci, V.F. & Kandel, E.R. A quantal analysis of the synaptic depression underlying habituation of the gill-withdrawal reflex in Aplysia. Proc. Natl. Acad. Sci. USA 71, 5004–5008 (1974).

    Article  CAS  Google Scholar 

  4. Cohen, T.E., Kaplan, S.W., Kandel, E.R. & Hawkins, R.D. A simplified preparation for relating cellular events to behavior: mechanisms contributing to habituation, dishabituation and sensitization of the Aplysia gill-withdrawal reflex. J. Neurosci. 17, 2886–2899 (1997).

    Article  CAS  Google Scholar 

  5. Frost, L. et al. A simplified preparation for relating cellular events to behavior: contribution of LE and unidentified siphon sensory neurons to mediation and habituation of the Aplysia gill- and siphon-withdrawal reflex. J. Neurosci. 17, 2900–2913 (1997).

    Article  CAS  Google Scholar 

  6. Antonov, I., Kandel, E.R. & Hawkins, R.D. The contribution of facilitation of monosynaptic PSPs to dishabituation and sensitization of the Aplysia siphon withdrawal reflex. J. Neurosci. 19, 10438–10450 (1999).

    Article  CAS  Google Scholar 

  7. Gover, T.D., Jiang, X.Y. & Abrams, T.W. Persistent, exocytosis-independent silencing of release sites underlies homosynaptic depression at sensory synapses in Aplysia. J. Neurosci. 22, 1942–1955 (2002).

    Article  CAS  Google Scholar 

  8. Illich, P.A. & Walters, E.T. Mechanosensory neurons innervating Aplysia siphon encode noxious stimuli and display nociceptive sensitization. J. Neurosci. 17, 459–469 (1997).

    Article  CAS  Google Scholar 

  9. Byrne, J.H. & Kandel, E.R. Presynaptic facilitation revisited: state and time dependence. J. Neurosci. 16, 425–435 (1996).

    Article  CAS  Google Scholar 

  10. Walters, E.T. & Byrne, J.H. Post-tetanic potentiation in Aplysia sensory neurons. Brain Res. 293, 377–380 (1984).

    Article  CAS  Google Scholar 

  11. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  12. Hawkins, R.D., Abrams, T.W., Carew, T.J. & Kandel, E.R. A cellular mechanism of classical conditioning in Aplysia: activity-dependent amplification of presynaptic facilitation. Science 219, 400–405 (1983).

    Article  CAS  Google Scholar 

  13. Walters, E.T. & Byrne, J.H. Associative conditioning of single sensory neurons suggests a cellular mechanism for learning. Science 219, 405–408 (1983).

    Article  CAS  Google Scholar 

  14. Jiang, X.Y. & Abrams, T.W. Use-dependent decline of paired-pulse facilitation at Aplysia sensory neuron synapses suggests a distinct vesicle pool or release mechanism. J. Neurosci. 18, 10310–10319 (1998).

    Article  CAS  Google Scholar 

  15. Marinesco, S. & Carew, T.J. Serotonin release evoked by tail nerve stimulation in the CNS of Aplysia: characterization and relationship to heterosynaptic plasticity. J. Neurosci. 22, 2299–2312 (2002).

    Article  CAS  Google Scholar 

  16. Stark, L.L., Mercer, A.R., Emptage, N.J. & Carew, T.J. Pharmacological and kinetic characterization of two functional classes of serotonergic modulation in Aplysia sensory neurons. J. Neurophysiol. 75, 855–866 (1996).

    Article  CAS  Google Scholar 

  17. Jarrard, H.E., Goldsmith, B.A. & Abrams, T.W. In Aplysia sensory neurons, the neuropeptide SCPB and serotonin differ in efficacy both in modulating cellular properties and in activating adenylyl cyclase: implications for mechanisms underlying presynaptic facilitation. Brain Res. 616, 188–199 (1993).

    Article  CAS  Google Scholar 

  18. Siegelbaum, S.A., Camardo, J.S. & Kandel, E.R. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299, 413–417 (1982).

    Article  CAS  Google Scholar 

  19. Royer, S., Coulson, R.L. & Klein, M. Switching off and on of synaptic sites at Aplysia sensorimotor synapses. J. Neurosci. 20, 626–638 (2000).

    Article  CAS  Google Scholar 

  20. Adler, E.M., Augustine, G.J., Duffy, S.N. & Charlton, M.P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci. 11, 1496–1507 (1991).

    Article  CAS  Google Scholar 

  21. Bao, J.X., Kandel, E.R. & Hawkins, R.D. Involvement of pre- and postsynaptic mechanisms in posttetanic potentiation at Aplysia synapses. Science 275, 969–973 (1997).

    Article  CAS  Google Scholar 

  22. Antonov, I., Antonova, I., Kandel, E.R. & Hawkins, R.D. Activity-dependent presynaptic facilitation and Hebbian LTP are both required and interact during classical conditioning in Aplysia. Neuron 37, 135–147 (2003).

    Article  CAS  Google Scholar 

  23. Murphy, G.G. & Glanzman, D.L. Enhancement of sensorimotor connections by conditioning-related stimulation in Aplysia depends upon postsynaptic Ca2+. Proc. Natl. Acad. Sci. USA 93, 9931–9936 (1996).

    Article  CAS  Google Scholar 

  24. Bougie, J.K. et al. The atypical protein kinase C in Aplysia can form a protein kinase M by cleavage. J. Neurochem. 109, 1129–1143 (2009).

    Article  CAS  Google Scholar 

  25. Sossin, W.S. Isoform specificity of protein kinase Cs in synaptic plasticity. Learn. Mem. 14, 236–246 (2007).

    Article  CAS  Google Scholar 

  26. Dominguez, I. et al. Inhibition of protein kinase C zeta subspecies blocks the activation of an NF-κB–like activity in Xenopus laevis oocytes. Mol. Cell. Biol. 13, 1290–1295 (1993).

    Article  CAS  Google Scholar 

  27. Guizzetti, M. & Costa, L.G. Possible role of protein kinase C zeta in muscarinic receptor–induced proliferation of astrocytoma cells. Biochem. Pharmacol. 60, 1457–1466 (2000).

    Article  CAS  Google Scholar 

  28. Eliot, L.S., Kandel, E.R., Siegelbaum, S.A. & Blumenfeld, H. Imaging terminals of Aplysia sensory neurons demonstrates role of enhanced Ca2+ influx in presynaptic facilitation. Nature 361, 634–637 (1993).

    Article  CAS  Google Scholar 

  29. Kohout, S.C., Corbalan-Garcia, S., Torrecillas, A., Gomez-Fernandez, J.C. & Falke, J.J. C2 domains of protein kinase C isoforms alpha, beta, and gamma: activation parameters and calcium stoichiometries of the membrane-bound state. Biochemistry 41, 11411–11424 (2002).

    Article  CAS  Google Scholar 

  30. Staudinger, J., Lu, J. & Olson, E.N. Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J. Biol. Chem. 272, 32019–32024 (1997).

    Article  CAS  Google Scholar 

  31. Kruger, K.E. et al. Cloning and characterization of Ca2+-dependent and Ca2+-independent PKCs expressed in Aplysia sensory cells. J. Neurosci. 11, 2303–2313 (1991).

    Article  CAS  Google Scholar 

  32. Sossin, W.S., Diaz-Arrastia, R. & Schwartz, J.H. Characterization of two isoforms of protein kinase C in the nervous system of Aplysia californica. J. Biol. Chem. 268, 5763–5768 (1993).

    CAS  PubMed  Google Scholar 

  33. Dumitriu, B., Cohen, J.E., Wan, Q., Negroiu, A.M. & Abrams, T.W. Serotonin receptor antagonists discriminate between PKA- and PKC-mediated plasticity in Aplysia sensory neurons. J. Neurophysiol. 95, 2713–2720 (2006).

    Article  CAS  Google Scholar 

  34. Antonov, I., Ha, T., Antonova, I., Moroz, L.L. & Hawkins, R.D. Role of nitric oxide in classical conditioning of siphon withdrawal in Aplysia. J. Neurosci. 27, 10993–11002 (2007).

    Article  CAS  Google Scholar 

  35. Frost, W.N., Clark, G.A. & Kandel, E.R. Parallel processing of short-term memory for sensitization in Aplysia. J. Neurobiol. 19, 297–334 (1988).

    Article  CAS  Google Scholar 

  36. Gingrich, K.J. & Byrne, J.H. Simulation of synaptic depression, posttetanic potentiation, and presynaptic facilitation of synaptic potentials from sensory neurons mediating gill-withdrawal reflex in Aplysia. J. Neurophysiol. 53, 652–669 (1985).

    Article  CAS  Google Scholar 

  37. Zhao, Y. & Klein, M. Modulation of the readily releasable pool of transmitter and of excitation-secretion coupling by activity and by serotonin at Aplysia sensorimotor synapses in culture. J. Neurosci. 22, 10671–10679 (2002).

    Article  CAS  Google Scholar 

  38. Bailey, C.H. & Chen, M. Morphological basis of short-term habituation in Aplysia. J. Neurosci. 8, 2452–2459 (1988).

    Article  CAS  Google Scholar 

  39. Tang, Y., Schlumpberger, T., Kim, T., Lueker, M. & Zucker, R.S. Effects of mobile buffers on facilitation: experimental and computational studies. Biophys. J. 78, 2735–2751 (2000).

    Article  CAS  Google Scholar 

  40. Tank, D.W., Regehr, W.G. & Delaney, K.R. A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. J. Neurosci. 15, 7940–7952 (1995).

    Article  CAS  Google Scholar 

  41. Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307–318 (1998).

    Article  CAS  Google Scholar 

  42. Zhao, Y. et al. Isoform specificity of PKC translocation in living Aplysia sensory neurons and a role for Ca2+-dependent PKC APL I in the induction of intermediate-term facilitation. J. Neurosci. 26, 8847–8856 (2006).

    Article  CAS  Google Scholar 

  43. Klein, M., Shapiro, E. & Kandel, E.R. Synaptic plasticity and the modulation of the Ca2+ current. J. Exp. Biol. 89, 117–157 (1980).

    CAS  PubMed  Google Scholar 

  44. Manseau, F., Fan, X., Hueftlein, T., Sossin, W. & Castellucci, V.F. Ca2+-independent protein kinase C Apl II mediates the serotonin-induced facilitation at depressed Aplysia sensorimotor synapses. J. Neurosci. 21, 1247–1256 (2001).

    Article  CAS  Google Scholar 

  45. Pinsker, H., Kupfermann, I., Castellucci, V. & Kandel, E. Habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science 167, 1740–1742 (1970).

    Article  CAS  Google Scholar 

  46. Moore, T. & Armstrong, K.M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  Google Scholar 

  47. Winkowski, D.E. & Knudsen, E.I. Top-down control of multimodal sensitivity in the barn owl optic tectum. J. Neurosci. 27, 13279–13291 (2007).

    Article  CAS  Google Scholar 

  48. Pashler, H., Johnston, J.C. & Ruthruff, E. Attention and performance. Annu. Rev. Psychol. 52, 629–651 (2001).

    Article  CAS  Google Scholar 

  49. Knudsen, E.I. Control from below: the role of a midbrain network in spatial attention. Eur. J. Neurosci. 33, 1961–1972 (2011).

    Article  Google Scholar 

  50. Murphy, G.G. & Glanzman, D.L. Mediation of classical conditioning in Aplysia californica by long-term potentiation of sensorimotor synapses. Science 278, 467–471 (1997).

    Article  CAS  Google Scholar 

  51. Lin, A.H. et al. Serotonin stimulation of cAMP-dependent plasticity in Aplysia sensory neurons is mediated by calmodulin-sensitive adenylyl cyclase. Proc. Natl. Acad. Sci. USA 107, 15607–15612 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Sossin, S. Thompson and E. Walters for commenting on an earlier version of this manuscript. We thank P. Shrestha for performing the co-immunoprecipitation and immunoblot experiments. We thank I. Antonov and R. Hawkins for introducing us to their behavioral preparation. This work was supported by US National Institutes of Health grant R01 MH-55880 to T.W.A.

Author information

Authors and Affiliations

Authors

Contributions

X.-Y.J. and T.W.A. discovered the BDP phenomenon. Q.W., K.S.M. and T.W.A. designed the experiments. Q.W., X.-Y.J., A.M.N. and S.-G.L. carried out the experiments analyzing the mechanism of BDP. K.S.M. performed the behavioral experiments. T.W.A., K.S.M. and Q.W. wrote the paper.

Corresponding author

Correspondence to Thomas W Abrams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 1 (PDF 5805 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Q., Jiang, XY., Negroiu, A. et al. Protein kinase C acts as a molecular detector of firing patterns to mediate sensory gating in Aplysia. Nat Neurosci 15, 1144–1152 (2012). https://doi.org/10.1038/nn.3158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing