Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Overexpression of Down syndrome cell adhesion molecule impairs precise synaptic targeting

Abstract

Fragile X syndrome is caused by the loss of Fragile X mental retardation protein (FMRP), an RNA-binding protein that suppresses protein translation. We found that FMRP binds to Down syndrome cell adhesion molecule (Dscam) RNA, a molecule that is involved in neural development and has been implicated in Down syndrome. Elevated Dscam protein levels in FMRP null Drosophila and in flies with three copies of the Dscam gene both produced specific and similar synaptic targeting errors in a hard-wired neural circuit, which impaired the flies' sensory perception. Reducing Dscam levels in FMRP null flies reduced synaptic targeting errors and rescued behavioral responses. Our results indicate that excess Dscam protein may be a common molecular mechanism underlying altered neural wiring in intellectual disabilities such as Fragile X and Down syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FMRP suppresses Dscam protein translation.
Figure 2: The pSc mechanosensory neuron is identifiable between flies on the basis of the location of its corresponding bristle.
Figure 3: Elevated Dscam protein levels produce specific axonal targeting errors.
Figure 4: Errors in synaptic targeting impair touch perception.
Figure 5: FMRP binds multiple Dscam isoforms.

Similar content being viewed by others

References

  1. Rachidi, M. & Lopes, C. Mental retardation in Down syndrome: from gene dosage imbalance to molecular and cellular mechanisms. Neurosci. Res. 59, 349–369 (2007).

    Article  CAS  Google Scholar 

  2. Bassell, G.J. & Warren, S.T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  Google Scholar 

  3. Ascano, M. Jr. et al. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492, 382–386 (2012).

    Article  CAS  Google Scholar 

  4. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  Google Scholar 

  5. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  Google Scholar 

  6. Takashima, S., Becker, L.E., Armstrong, D.L. & Chan, F. Abnormal neuronal development in the visual cortex of the human fetus and infant with Down's syndrome. A quantitative and qualitative Golgi study. Brain Res. 225, 1–21 (1981).

    Article  CAS  Google Scholar 

  7. Antonarakis, S.E. 10 years of genomics, chromosome 21 and Down syndrome. Genomics 51, 1–16 (1998).

    Article  CAS  Google Scholar 

  8. Yamakawa, K. et al. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum. Mol. Genet. 7, 227–237 (1998).

    Article  CAS  Google Scholar 

  9. Korenberg, J.R. et al. Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc. Natl. Acad. Sci. USA 91, 4997–5001 (1994).

    Article  CAS  Google Scholar 

  10. Barlow, G.M. et al. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet. Med. 3, 91–101 (2001).

    Article  CAS  Google Scholar 

  11. Hildmann, T. et al. A contiguous 3-Mb sequence-ready map in the S3-MX region on 21q22.2 based on high- throughput nonisotopic library screenings. Genome Res. 9, 360–372 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alves-Sampaio, A., Troca-Marin, J.A. & Montesinos, M.L. NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of Down's syndrome. J. Neurosci. 30, 13537–13548 (2010).

    Article  CAS  Google Scholar 

  13. Schmucker, D. & Chen, B. Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev. 23, 147–156 (2009).

    Article  CAS  Google Scholar 

  14. Ghysen, A. The projection of sensory neurons in the central nervous system of Drosophila: choice of the appropriate pathway. Dev. Biol. 78, 521–541 (1980).

    Article  CAS  Google Scholar 

  15. Chen, B.E. et al. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell 125, 607–620 (2006).

    Article  CAS  Google Scholar 

  16. Neufeld, S.Q., Hibbert, A.D. & Chen, B.E. Opposing roles of PlexinA and PlexinB in axonal branch and varicosity formation. Mol. Brain 4, 15 (2011).

    Article  CAS  Google Scholar 

  17. Hinz, U., Giebel, B. & Campos-Ortega, J.A. The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes. Cell 76, 77–87 (1994).

    Article  CAS  Google Scholar 

  18. Ashley, C.T. Jr., Wilkinson, K.D., Reines, D. & Warren, S.T. FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262, 563–566 (1993).

    Article  CAS  Google Scholar 

  19. Bagni, C. & Greenough, W.T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat. Rev. Neurosci. 6, 376–387 (2005).

    Article  CAS  Google Scholar 

  20. Zalfa, F. et al. A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat. Neurosci. 10, 578–587 (2007).

    Article  CAS  Google Scholar 

  21. Didiot, M.C. et al. The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res. 36, 4902–4912 (2008).

    Article  CAS  Google Scholar 

  22. Canal, I., Acebes, A. & Ferrus, A. Single neuron mosaics of the Drosophila gigas mutant project beyond normal targets and modify behavior. J. Neurosci. 18, 999–1008 (1998).

    Article  CAS  Google Scholar 

  23. Corfas, G. & Dudai, Y. Habituation and dishabituation of a cleaning reflex in normal and mutant Drosophila. J. Neurosci. 9, 56–62 (1989).

    Article  CAS  Google Scholar 

  24. Phillis, R.W. et al. Isolation of mutations affecting neural circuitry required for grooming behavior in Drosophila melanogaster. Genetics 133, 581–592 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vandervorst, P. & Ghysen, A. Genetic control of sensory connections in Drosophila. Nature 286, 65–67 (1980).

    Article  CAS  Google Scholar 

  26. Darnell, J.C., Fraser, C.E., Mostovetsky, O. & Darnell, R.B. Discrimination of common and unique RNA-binding activities among Fragile X mental retardation protein paralogs. Hum. Mol. Genet. 18, 3164–3177 (2009).

    Article  CAS  Google Scholar 

  27. Darnell, J.C. et al. Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev. 19, 903–918 (2005).

    Article  CAS  Google Scholar 

  28. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).

    Article  CAS  Google Scholar 

  29. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  30. Li, H.L. et al. Dscam mediates remodeling of glutamate receptors in Aplysia during de novo and learning-related synapse formation. Neuron 61, 527–540 (2009).

    Article  CAS  Google Scholar 

  31. Guruharsha, K.G. et al. A protein complex network of Drosophila melanogaster. Cell 147, 690–703 (2011).

    Article  CAS  Google Scholar 

  32. Watson, F.L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874–1878 (2005).

    Article  CAS  Google Scholar 

  33. Watthanasurorot, A., Jiravanichpaisal, P., Liu, H., Soderhall, I. & Soderhall, K. Bacteria-induced Dscam isoforms of the crustacean, Pacifastacus leniusculus. PLoS Pathog. 7, e1002062 (2011).

    Article  CAS  Google Scholar 

  34. Monzo, K. et al. Fragile X mental retardation protein controls trailer hitch expression and cleavage furrow formation in Drosophila embryos. Proc. Natl. Acad. Sci. USA 103, 18160–18165 (2006).

    Article  CAS  Google Scholar 

  35. Stetler, A. et al. Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp. Hum. Mol. Genet. 15, 87–96 (2006).

    Article  CAS  Google Scholar 

  36. Dong, Y., Taylor, H. & Dimopoulos, G. AgDscam, a hypervariable immunoglobulin domain–containing receptor of the Anopheles gambiae innate immune system. PLoS Biol. 4, e229 (2006).

    Article  Google Scholar 

  37. Blank, M. et al. The Down syndrome critical region regulates retinogeniculate refinement. J. Neurosci. 31, 5764–5776 (2011).

    Article  CAS  Google Scholar 

  38. Grossman, T.R. et al. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 7, e1002344 (2011).

    Article  CAS  Google Scholar 

  39. Dierssen, M. & Ramakers, G.J. Dendritic pathology in mental retardation: from molecular genetics to neurobiology. Genes Brain Behav. 5 (suppl. 2), 48–60 (2006).

    Article  CAS  Google Scholar 

  40. Kaufmann, W.E. & Moser, H.W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10, 981–991 (2000).

    Article  CAS  Google Scholar 

  41. Nimchinsky, E.A., Oberlander, A.M. & Svoboda, K. Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21, 5139–5146 (2001).

    Article  CAS  Google Scholar 

  42. Dockendorff, T.C. et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34, 973–984 (2002).

    Article  CAS  Google Scholar 

  43. Bolduc, F.V., Bell, K., Cox, H., Broadie, K.S. & Tully, T. Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat. Neurosci. 11, 1143–1145 (2008).

    Article  CAS  Google Scholar 

  44. Zhang, Y.Q. et al. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107, 591–603 (2001).

    Article  CAS  Google Scholar 

  45. Parks, A.L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36, 288–292 (2004).

    Article  CAS  Google Scholar 

  46. Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  Google Scholar 

  47. Reeve, S.P. et al. The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr. Biol. 15, 1156–1163 (2005).

    Article  CAS  Google Scholar 

  48. Hilgers, V., Lemke, S.B. & Levine, M. ELAV mediates 3′ UTR extension in the Drosophila nervous system. Genes Dev. 26, 2259–2264 (2012).

    Article  CAS  Google Scholar 

  49. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T.-J. Lin, I. Kays and V. Stoudenikina for assistance with experiments, R. Suciu for assistance in pyrosequencing analysis, A. Staffa and the Massively Parallel Sequencing Unit at Génome Québec for pyrosequencing assistance, and B. Douba for graphic arts assistance in the fly drawing. This work was supported by an Alfred P. Sloan Research Fellowship and a Canada Research Chair grant 950-212462 (to B.E.C.) and by funds from the Department of Medicine at McGill University and the Research Institute of the McGill University Health Centre.

Author information

Authors and Affiliations

Authors

Contributions

B.E.C. designed the experiments and supervised the project. V.C., A.D.H., F.E. and B.E.C. performed the experiments and analyzed the data. V.C., F.E. and B.E.C. wrote the manuscript.

Corresponding author

Correspondence to Brian E Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 7047 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvetkovska, V., Hibbert, A., Emran, F. et al. Overexpression of Down syndrome cell adhesion molecule impairs precise synaptic targeting. Nat Neurosci 16, 677–682 (2013). https://doi.org/10.1038/nn.3396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing