Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity

Abstract

The dorsolateral striatum and cannabinoid type 1 receptor (CB1) signaling mediate habitual action learning, which is thought to require a balance of activity in the direct and indirect striatal output pathways. However, very little is known about how the high CB1–expressing striatal inhibitory microcircuitry might contribute to long-term plasticity capable of sculpting direct and indirect pathway output. Using optogenetic and molecular interrogation of striatal GABAergic microcircuits, we examined voltage-dependent long-term depression of inhibitory synapses (iLTD) onto mouse and rat medium spiny projection neurons (MSNs). The observed iLTD involved recruitment of different endocannabinoid types and showed both presynaptic and postsynaptic selectivity for MSN subtypes, ultimately resulting in a powerful disinhibition of direct pathway MSNs. These results suggest a new role for voltage states in gating circuit-specific forms of synaptic plasticity and illuminate possible circuit dynamics underlying action control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: State-dependent endocannabinoid (eCB)-mediated forms of inhibitory long-term depression (iLTD) at striatal inhibitory synapses.
Figure 2: Differential eCB signaling mediates up and down state forms of iLTD.
Figure 3: Up-state iLTD is output pathway nonspecific, whereas down-state iLTD is specific to direct pathway MSNs.
Figure 4: Optogenetic targeting of RGS9-expressing MSNs or striatal PV-expressing FSIs.
Figure 5: The MSN-MSN synapse contributes to both up- and down-state iLTD, whereas the FSI-MSN synapse solely contributes to down-state iLTD.
Figure 6: Cre-mediated CB1 deletion effects on state-dependent iLTD.
Figure 7: Stimulation and voltage oscillation timing-dependent iLTD.

Similar content being viewed by others

References

  1. Yin, H.H. & Knowlton, B.J. Contributions of striatal subregions to place and response learning. Learn. Mem. 11, 459–463 (2004).

    Article  Google Scholar 

  2. Hilário, M.R., Clouse, E., Yin, H.H. & Costa, R.M. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci. 1, 6 (2007).

    Article  Google Scholar 

  3. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  4. Gerfen, C.R. & Surmeier, D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    Article  CAS  Google Scholar 

  5. Mink, J.W. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch. Neurol. 60, 1365–1368 (2003).

    Article  Google Scholar 

  6. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    Article  CAS  Google Scholar 

  7. Uchigashima, M. et al. Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J. Neurosci. 27, 3663–3676 (2007).

    Article  CAS  Google Scholar 

  8. Tepper, J.M., Koós, T. & Wilson, C.J. GABAergic microcircuits in the neostriatum. Trends Neurosci. 27, 662–669 (2004).

    Article  CAS  Google Scholar 

  9. Freiman, I. et al. Analysis of the effects of cannabinoids on identified synaptic connections in the caudate-putamen by paired recordings in transgenic mice. J. Physiol. (Lond.) 575, 789–806 (2006).

    Article  CAS  Google Scholar 

  10. Winters, B.D. et al. Cannabinoid receptor 1–expressing neurons in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 109, E2717–E2725 (2012).

    Article  CAS  Google Scholar 

  11. Wilson, C.J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996).

    Article  CAS  Google Scholar 

  12. Mahon, S. et al. Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle. J. Neurosci. 26, 12587–12595 (2006).

    Article  CAS  Google Scholar 

  13. Plenz, D. & Kitai, S.T. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci. 18, 266–283 (1998).

    Article  CAS  Google Scholar 

  14. Adermark, L. & Lovinger, D.M. Combined activation of L-type Ca2+ channels and synaptic transmission is sufficient to induce striatal long-term depression. J. Neurosci. 27, 6781–6787 (2007).

    Article  CAS  Google Scholar 

  15. Xu, W. & Lipscombe, D. Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951 (2001).

    Article  CAS  Google Scholar 

  16. Adermark, L. & Lovinger, D.M. Frequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs. J. Neurosci. 29, 1375–1380 (2009).

    Article  CAS  Google Scholar 

  17. Maejima, T. et al. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J. Neurosci. 25, 6826–6835 (2005).

    Article  CAS  Google Scholar 

  18. Plenz, D. When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci. 26, 436–443 (2003).

    Article  CAS  Google Scholar 

  19. Bracci, E. & Panzeri, S. Excitatory GABAergic effects in striatal projection neurons. J. Neurophysiol. 95, 1285–1290 (2006).

    Article  CAS  Google Scholar 

  20. Wilson, C.J. & Groves, P.M. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J. Comp. Neurol. 194, 599–615 (1980).

    Article  CAS  Google Scholar 

  21. Bolam, J.P., Hanley, J.J., Booth, P.A. & Bevan, M.D. Synaptic organization of the basal ganglia. J. Anat. 196, 527–542 (2000).

    Article  CAS  Google Scholar 

  22. Kita, H., Kosaka, T. & Heizmann, C.W. Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res. 536, 1–15 (1990).

    Article  CAS  Google Scholar 

  23. Bennett, B.D. & Bolam, J.P. Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat. Neuroscience 62, 707–719 (1994).

    Article  CAS  Google Scholar 

  24. Kubota, Y. & Kawaguchi, Y. Dependence of GABAergic synaptic areas on the interneuron type and target size. J. Neurosci. 20, 375–386 (2000).

    Article  CAS  Google Scholar 

  25. Koós, T. & Tepper, J.M. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat. Neurosci. 2, 467–472 (1999).

    Article  Google Scholar 

  26. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    Article  CAS  Google Scholar 

  27. Tanimura, A. et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65, 320–327 (2010).

    Article  CAS  Google Scholar 

  28. Egertová, M., Simon, G.M., Cravatt, B.F. & Elphick, M.R. Localization of N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) expression in mouse brain: a new perspective on N-acylethanolamines as neural signaling molecules. J. Comp. Neurol. 506, 604–615 (2008).

    Article  Google Scholar 

  29. Tsou, K. et al. Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neurosci. Lett. 254, 137–140 (1998).

    Article  CAS  Google Scholar 

  30. Malone, D.T., Kearn, C.S., Chongue, L., Mackie, K. & Taylor, D.A. Effect of social isolation on CB1 and D2 receptor and fatty acid amide hydrolase expression in rats. Neuroscience 152, 265–272 (2008).

    Article  CAS  Google Scholar 

  31. Egertová, M., Cravatt, B.F. & Elphick, M.R. Comparative analysis of fatty acid amide hydrolase and cb(1) cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience 119, 481–496 (2003).

    Article  Google Scholar 

  32. Egertová, M., Giang, D.K., Cravatt, B.F. & Elphick, M.R. A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proc. Biol. Sci. 265, 2081–2085 (1998).

    Article  Google Scholar 

  33. Maccarrone, M. et al. Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. J. Neurochem. 85, 1018–1025 (2003).

    Article  CAS  Google Scholar 

  34. Maccarrone, M. et al. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat. Neurosci. 11, 152–159 (2008).

    Article  CAS  Google Scholar 

  35. Puente, N. et al. Polymodal activation of the endocannabinoid system in the extended amygdala. Nat. Neurosci. 14, 1542–1547 (2011).

    Article  CAS  Google Scholar 

  36. Lerner, T.N. & Kreitzer, A.C. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to Parkinsonian motor deficits. Neuron 73, 347–359 (2012).

    Article  CAS  Google Scholar 

  37. Yoshida, T. et al. Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J. Neurosci. 26, 4740–4751 (2006).

    Article  CAS  Google Scholar 

  38. Narushima, M. Depolarization-induced suppression of inhibition mediated by endocannabinoids at synapses from fast-spiking interneurons to medium spiny neurons in the striatum. Eur. J. Neurosci. 24, 2246–2252 (2006).

    Article  Google Scholar 

  39. Stern, E.A., Jaeger, D. & Wilson, C.J. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature 394, 475–478 (1998).

    Article  CAS  Google Scholar 

  40. Wilson, C.J. GABAergic inhibition in the neostriatum. Prog. Brain Res. 160, 91–110 (2007).

    Article  CAS  Google Scholar 

  41. Koós, T., Tepper, J.M. & Wilson, C.J. Comparison of IPSCs evoked by spiny and fast-spiking neurons in the neostriatum. J. Neurosci. 24, 7916–7922 (2004).

    Article  Google Scholar 

  42. Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    Article  CAS  Google Scholar 

  43. Watts, A., Gritton, H.J., Sweigart, J. & Poe, G.R. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning. J. Neurosci. 32, 13411–13420 (2012).

    Article  CAS  Google Scholar 

  44. Dang, M.T. et al. Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc. Natl. Acad. Sci. USA 103, 15254–15259 (2006).

    Article  CAS  Google Scholar 

  45. Tanahira, C. et al. Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice. Neurosci. Res. 63, 213–223 (2009).

    Article  CAS  Google Scholar 

  46. Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    Article  CAS  Google Scholar 

  47. Cravatt, B.F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  Google Scholar 

  48. Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  Google Scholar 

  49. Mathur, B.N., Capik, N.A., Alvarez, V.A. & Lovinger, D.M. Serotonin induces long-term depression at corticostriatal synapses. J. Neurosci. 31, 7402–7411 (2011).

    Article  CAS  Google Scholar 

  50. Mathur, B.N. & Deutch, A.Y. Rat meningeal and brain microvasculature pericytes co-express the vesicular glutamate transporters 2 and 3. Neurosci. Lett. 435, 90–94 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Lutz (Institute of Molecular Biology Mainz) and G. Marsicano (Institut National de la Santé et de la Recherche Médicale Bordeaux) for generously providing the Cnr1loxP/loxP mouse, and P. Pacher (National Institute on Alcohol Abuse and Alcoholism) for providing FAAH knockout mice.

Author information

Authors and Affiliations

Authors

Contributions

B.N.M. and D.M.L. designed the experiments. B.N.M. performed the experiments and analyzed the data. C.T. and N.T. generated Pvalb-Cre and CAG-mRFP-GFP mouse lines. B.N.M. and D.M.L. wrote the manuscript.

Corresponding author

Correspondence to David M Lovinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–8 and Supplementary Tables 1 and 2 (PDF 1811 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, B., Tanahira, C., Tamamaki, N. et al. Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci 16, 1275–1283 (2013). https://doi.org/10.1038/nn.3478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing