Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular mechanisms of epilepsy

Abstract

Decades of experimental work have established an imbalance of excitation and inhibition as the leading mechanism of the transition from normal brain function to seizure. In epilepsy, these transitions are rare and abrupt. Transition processes incorporating positive feedback, such as activity-dependent disinhibition, could provide these uncommon timing features. A rapidly expanding array of genetic etiologies will help delineate the molecular mechanism(s). This delineation will entail quite a bit of cell biology. The genes discovered so far are more remarkable for their diversity than their similarities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seizure timing.

Similar content being viewed by others

References

  1. Matsumoto, H. & Ajmonemarsan, C. Cellular mechanisms in experimental epileptic seizures. Science 144, 193–194 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Prince, D.A. & Wilder, B.J. Control mechanisms in cortical epileptogenic foci. “Surround” inhibition. Arch. Neurol. 16, 194–202 (1967).

    Article  CAS  PubMed  Google Scholar 

  3. Walther, H., Lambert, J.D., Jones, R.S., Heinemann, U. & Hamon, B. Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci. Lett. 69, 156–161 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Wiechert, P. & Herbst, A. Provocation of cerebral seizures by derangement of the natural balance between glutamic acid and γ-aminobutyric acid. J. Neurochem. 13, 59–64 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. Croucher, M.J., Collins, J.F. & Meldrum, B.S. Anticonvulsant action of excitatory amino acid antagonists. Science 216, 899–901 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Scharfman, H.E. The neurobiology of epilepsy. Curr. Neurol. Neurosci. Rep. 7, 348–354 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jett, D.A. Chemical toxins that cause seizures. Neurotoxicology 33, 1473–1475 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Boison, D. Methylxanthines, seizures, and excitotoxicity. Handb. Exp. Pharmacol. 200, 251–266 (2011).

    Article  CAS  Google Scholar 

  9. Moran, N.F. et al. Epilepsy in the United Kingdom: seizure frequency and severity, anti-epileptic drug utilization and impact on life in 1,652 people with epilepsy. Seizure 13, 425–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Macdonald, R.L. & Kang, J.Q. mRNA surveillance and endoplasmic reticulum quality control processes alter biogenesis of mutant GABAA receptor subunits associated with genetic epilepsies. Epilepsia 53 (suppl. 9), 59–70 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu, F.H. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9, 1142–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Carvill, G.L. et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology 82, 1245–1253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ran, X. et al. EpilepsyGene: a genetic resource for genes and mutations related to epilepsy. Nucleic Acids Res. doi:10.1093/nar/gku943 (2014).

  14. Epi4K Consortium & Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

  15. Veeramah, K.R. et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 54, 1270–1281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weckhuysen, S. et al. KCNQ2 Study Group. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81, 1697–1703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, W. et al. Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. J. Neurosci. 29, 14247–14256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buckmaster, P.S. Does mossy fiber sprouting give rise to the epileptic state? Adv. Exp. Med. Biol. 813, 161–168 (2014).

    Article  PubMed  Google Scholar 

  19. Sutula, T.P. & Dudek, F.E. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. Prog. Brain Res. 163, 541–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ferini-Strambi, L., Sansoni, V. & Combi, R. Nocturnal frontal lobe epilepsy and the acetylcholine receptor. Neurologist 18, 343–349 (2012).

    Article  PubMed  Google Scholar 

  21. Herzog, A.G. Catamenial epilepsy: definition, prevalence pathophysiology and treatment. Seizure 17, 151–159 (2008).

    Article  PubMed  Google Scholar 

  22. Lopes da Silva, F. et al. Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44 (suppl. 12), 72–83 (2003).

    Article  PubMed  Google Scholar 

  23. Jirsa, V.K., Stacey, W.C., Quilichini, P.P., Ivanov, A.I. & Bernard, C. On the nature of seizure dynamics. Brain 137, 2210–2230 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bracci, E., Vreugdenhil, M., Hack, S.P. & Jefferys, J.G. Dynamic modulation of excitation and inhibition during stimulation at gamma and beta frequencies in the CA1 hippocampal region. J. Neurophysiol. 85, 2412–2422 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Patenaude, C., Massicotte, G. & Lacaille, J.C. Cell-type specific GABA synaptic transmission and activity-dependent plasticity in rat hippocampal stratum radiatum interneurons. Eur. J. Neurosci. 22, 179–188 (2005).

    Article  PubMed  Google Scholar 

  26. Wester, J.C. & McBain, C.J. Behavioral state-dependent modulation of distinct interneuron subtypes and consequences for circuit function. Curr. Opin. Neurobiol. 29C, 118–125 (2014).

    Article  CAS  Google Scholar 

  27. Morimoto, K., Fahnestock, M. & Racine, R.J. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog. Neurobiol. 73, 1–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Valentine, M., Keddie, K.M. & Dunne, D. A comparison of techniques in electro-convulsive therapy. Br. J. Psychiatry 114, 989–996 (1968).

    Article  CAS  PubMed  Google Scholar 

  29. Le Duigou, C., Holden, T. & Kullmann, D.M. Short- and long-term depression at glutamatergic synapses on hippocampal interneurons by group I mGluR activation. Neuropharmacology 60, 748–756 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Jane, D.E., Lodge, D. & Collingridge, G.L. Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology 56, 90–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Méndez, P. & Bacci, A. Assortment of GABAergic plasticity in the cortical interneuron melting pot. Neural Plast. 2011, 976856 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kaeser, P.S. & Regehr, W.G. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76, 333–363 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Rajakulendran, S., Kaski, D. & Hanna, M.G. Neuronal P/Q-type calcium channel dysfunction in inherited disorders of the CNS. Nat. Rev. Neurol. 8, 86–96 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Lazarevic, V., Pothula, S., Andres-Alonso, M. & Fejtova, A. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release. Front. Cell. Neurosci. 7, 244 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Casillas-Espinosa, P.M., Powell, K.L. & O'Brien, T.J. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53 (suppl. 9), 41–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Meier, J.C., Semtner, M., Winkelmann, A. & Wolfart, J. Presynaptic mechanisms of neuronal plasticity and their role in epilepsy. Front. Cell. Neurosci. 8, 164 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Letts, V.A. et al. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat. Genet. 19, 340–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Yokoi, N., Fukata, M. & Fukata, Y. Synaptic plasticity regulated by protein-protein interactions and posttranslational modifications. Int. Rev. Cell Mol. Biol. 297, 1–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Fukata, Y. et al. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313, 1792–1795 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Goodkin, H.P., Joshi, S., Mtchedlishvili, Z., Brar, J. & Kapur, J. Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J. Neurosci. 28, 2527–2538 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naylor, D.E., Liu, H., Niquet, J. & Wasterlain, C.G. Rapid surface accumulation of NMDA receptors increases glutamatergic excitation during status epilepticus. Neurobiol. Dis. 54, 225–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kovács, R. et al. Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J. Neurosci. 29, 8565–8577 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chang, P., Walker, M.C. & Williams, R.S. Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol. Dis. 62, 296–306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fisher, R.S., Pedley, T.A., Moody, W.J. Jr. & Prince, D.A. The role of extracellular potassium in hippocampal epilepsy. Arch. Neurol. 33, 76–83 (1976).

    Article  CAS  PubMed  Google Scholar 

  45. Staley, K.J., Soldo, B.L. & Proctor, W.R. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269, 977–981 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Ransom, C.B., Ransom, B.R. & Sontheimer, H. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J. Physiol. (Lond.) 522, 427–442 (2000).

    Article  CAS  Google Scholar 

  47. Raimondo, J.V. et al. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system. Front. Cell. Neurosci. 7, 202 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Deng, H., Xiu, X. & Song, Z. The molecular biology of genetic-based epilepsies. Mol. Neurobiol. 49, 352–367 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Heinemann, U., Konnerth, A., Pumain, R. & Wadman, W.J. Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv. Neurol. 44, 641–661 (1986).

    CAS  PubMed  Google Scholar 

  50. Kovács, R., Kardos, J., Heinemann, U. & Kann, O. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures. J. Neurosci. 25, 4260–4269 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Macdonald, R.L. & Botzlakis, E.J. in Physiology and Pathology of Chloride Transporters and Channels in the Nervous System (eds. Alvarez-Leefmans, F. & Delpire, E.) Ch. 14, 257–282 (Elsevier, London, 2009).

  52. Staley, K.J. & Proctor, W.R. Modulation of mammalian dendritic GABA(A) receptor function by the kinetics of Cl and HCO3 transport. J. Physiol. (Lond.) 519, 693–712 (1999).

    Article  CAS  Google Scholar 

  53. Kahle, K.T. et al. Roles of the cation-chloride cotransporters in neurological disease. Nat. Clin. Pract. Neurol. 4, 490–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Larsen, B.R. et al. Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62, 608–622 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lillis, K.P., Kramer, M.A., Mertz, J., Staley, K.J. & White, J.A. Pyramidal cells accumulate chloride at seizure onset. Neurobiol. Dis. 47, 358–366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Albensi, B.C., Oliver, D.R., Toupin, J. & Odero, G. Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp. Neurol. 204, 1–13 (2007).

    Article  PubMed  Google Scholar 

  57. Bertram, E. The relevance of kindling for human epilepsy. Epilepsia 48 (suppl. 2), 65–74 (2007).

    Article  PubMed  Google Scholar 

  58. Prince, D.A., Parada, I. & Graber, K. in Jasper's Basic Mechanisms of the Epilepsies [Internet] 4th edn. (eds. Noebels, J.L. et al.) Ch. 24, 315–321 (National Center for Biotechnology Information, Bethesda, Maryland, 2012).

  59. Heinzen, E.L. et al. ATP1A3 Working Group. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol. 13, 503–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vaillend, C., Mason, S.E., Cuttle, M.F. & Alger, B.E. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region. J. Neurophysiol. 88, 2963–2978 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Guerrini, R. & Dobyns, W.B. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 13, 710–726 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mirzaa, G.M. & Poduri, A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am. J. Med. Genet. C. Semin. Med. Genet. 166C, 156–172 (2014).

    Article  PubMed  CAS  Google Scholar 

  63. Berdichevsky, Y. et al. PI3K-Akt signaling activates mTOR-mediated epileptogenesis in organotypic hippocampal culture model of post-traumatic epilepsy. J. Neurosci. 33, 9056–9067 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lasarge, C.L. & Danzer, S.C. Mechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation. Front. Mol. Neurosci. 7, 18 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wong, M. A critical review of mTOR inhibitors and epilepsy: from basic science to clinical trials. Expert Rev. Neurother. 13, 657–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Buckmaster, P.S. & Lew, F.H. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J. Neurosci. 31, 2337–2347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gardiner, J. & Marc, J. Disruption of normal cytoskeletal dynamics may play a key role in the pathogenesis of epilepsy. Neuroscientist 16, 28–39 (2010).

    Article  PubMed  Google Scholar 

  68. McNamara, J.O., Huang, Y.Z. & Leonard, A.S. Molecular signaling mechanisms underlying epileptogenesis. Sci. STKE 2006, re12 (2006).

    Article  PubMed  Google Scholar 

  69. Fernández, E., Rajan, N. & Bagni, C. The FMRP regulon: from targets to disease convergence. Front. Neurosci. 7, 191 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Na, E.S., Nelson, E.D., Kavalali, E.T. & Monteggia, L.M. The impact of MeCP2 loss- or gain-of-function on synaptic plasticity. Neuropsychopharmacology 38, 212–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Marsh, E.D. & Golden, J.A. in Jasper's Basic Mechanisms of the Epilepsies [Internet] 4th edn. (eds. Noebels, J.L. et al.) Ch. 63, 813–823 (National Center for Biotechnology Information, Bethesda, Maryland, 2012).

  72. Kato, M. & Dobyns, W.B. X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term, interneuronopathy. J. Child Neurol. 20, 392–397 (2005).

    Article  PubMed  Google Scholar 

  73. Southwell, D.G. et al. Interneurons from embryonic development to cell-based therapy. Science 344, 1240622 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. O'Leary, T. & Wyllie, D.J. Neuronal homeostasis: time for a change? J. Physiol. (Lond.) 589, 4811–4826 (2011).

    Article  CAS  Google Scholar 

  75. Frey, L.C. Epidemiology of posttraumatic epilepsy: a critical review. Epilepsia 44 (suppl. 10), 11–17 (2003).

    Article  PubMed  Google Scholar 

  76. Volman, V., Bazhenov, M. & Sejnowski, T.J. Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation. Proc. Natl. Acad. Sci. USA 108, 15402–15407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Carvill, G.L. et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat. Genet. 45, 1073–1076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ogiwara, I. et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 27, 5903–5914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, Y. et al. Dravet syndrome patient–derived neurons suggest a novel epilepsy mechanism. Ann. Neurol. 74, 128–139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Girard, J.M., Turnbull, J., Ramachandran, N. & Minassian, B.A. Progressive myoclonus epilepsy. Handb. Clin. Neurol. 113, 1731–1736 (2013).

    Article  PubMed  Google Scholar 

  82. Chabrol, B., Caillaud, C. & Minassian, B. Neuronal ceroid lipofuscinoses. Handb. Clin. Neurol. 113, 1701–1706 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by US National Institutes of Health grants NS034700 and NS040109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Staley.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staley, K. Molecular mechanisms of epilepsy. Nat Neurosci 18, 367–372 (2015). https://doi.org/10.1038/nn.3947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing