Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors

Abstract

CA1 pyramidal neurons degenerate after transient forebrain ischemia, whereas neurons in other regions of the hippocampus remain intact. Here we show that in rat hippocampal CA1 neurons, forebrain ischemia induces the phosphorylation of the N-methyl-D-aspartate (NMDA) receptor 2A subunit at Ser1232 (phospho-Ser1232). Ser1232 phosphorylation is catalyzed by cyclin-dependent kinase 5 (Cdk5). Inhibiting endogenous Cdk5, or perturbing interactions between Cdk5 and NR2A subunits, abolished NR2A phosphorylation at Ser1232 and protected CA1 pyramidal neurons from ischemic insult. Thus, we conclude that modulation of NMDA receptors by Cdk5 is the primary intracellular event underlying the ischemic injury of CA1 pyramidal neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of Cdk5 after transient forebrain ischemia is associated with CA1 pyramidal cell death.
Figure 2: Inhibition of Cdk5 protects CA1 pyramidal neurons from ischemic insult.
Figure 3: MK-801 prevents CA1 pyramidal cell death but not Cdk5 activation.
Figure 4: Cdk5 enhances recombinant NMDA receptor currents by phosphorylating the NR2A subunit at Ser1232.
Figure 5: Inhibition of Cdk5 prevents the ischemia-induced increase of EPSCNMDA.
Figure 6: Expression of the C-terminal fragment of NR2A dissociates endogenous Cdk5 from the NMDA receptor complex.
Figure 7: Interrupting Cdk5–NMDA receptor interaction protects CA1 neurons from ischemic insult.
Figure 8: NBQX prevents Cdk5 activation and CA1 pyramidal cell death.

Similar content being viewed by others

References

  1. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    Article  CAS  Google Scholar 

  2. Jover, T. et al. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J. Neurosci. 22, 2115–2124 (2002).

    Article  CAS  Google Scholar 

  3. Choi, D.W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 11, 465–469 (1988).

    Article  CAS  Google Scholar 

  4. Choi, D.W. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 18, 58–60 (1995).

    Article  CAS  Google Scholar 

  5. Simon, R.P., Swan, J.H., Griffiths, T. & Meldrum, B.S. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226, 850–852 (1984).

    Article  CAS  Google Scholar 

  6. Faden, A.I., Demediuk, P., Panter, S.S. & Vink, R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244, 798–800 (1989).

    Article  CAS  Google Scholar 

  7. Sattler, R. & Tymianski, M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 24, 107–129 (2001).

    Article  CAS  Google Scholar 

  8. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  9. Kutsuwada, T. et al. Molecular diversity of the NMDA receptor channel. Nature 358, 36–41 (1992).

    Article  CAS  Google Scholar 

  10. Meguro, H. et al. Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70–704 (1992).

    Article  CAS  Google Scholar 

  11. Monyer, H. et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221 (1992).

    Article  CAS  Google Scholar 

  12. Cull-Candy, S., Brickley, S. & Farrant, M. NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335 (2001).

    Article  CAS  Google Scholar 

  13. Abel, T. & Lattal, K.M. Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11, 180–187 (2001).

    Article  CAS  Google Scholar 

  14. Lee, J.M., Zipfel, G.J. & Choi, D.W. The changing landscape of ischaemic brain injury mechanisms. Nature 399 (Suppl.), A7–14 (1999).

    Article  CAS  Google Scholar 

  15. Meldrum, B. & Garthwaite, J. Excitatory amino acid neurotoxicity and neurodegenerative diseases. Trends Pharmacol. Sci. 11, 379–387 (1990).

    Article  CAS  Google Scholar 

  16. Scannevin, R.H. & Huganir, R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141 (2000).

    Article  CAS  Google Scholar 

  17. Ali, D.W & Salter, M.W. NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr. Opin. Neurobiol. 11, 336–342 (2001).

    Article  CAS  Google Scholar 

  18. Li, B.S. et al. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc. Natl. Acad. Sci. USA 98, 12742–12747 (2001).

    Article  CAS  Google Scholar 

  19. Lew, J., Beaudette, K., Litwin, C.M. & Wang, J.H. Purification and characterization of a novel proline-directed protein kinase from bovine brain. J. Biol. Chem. 267, 13383–13390 (1992).

    CAS  PubMed  Google Scholar 

  20. Tsai, L.H., Delalle, I., Caviness, V.S., Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).

    Article  CAS  Google Scholar 

  21. Greengard, P., Allen, P.B. & Nairn, A.C. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23, 435–447 (1999).

    Article  CAS  Google Scholar 

  22. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).

    Article  CAS  Google Scholar 

  23. Patrick, G. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).

    Article  CAS  Google Scholar 

  24. Nguyen, M.D., Larivirre, RC. & Julien, J.P. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135–147 (2001).

    Article  CAS  Google Scholar 

  25. Lee, M.S., Kwon, Y.T., Li, M., Peng, J., Friedlander, R.M. & Tsai, L.H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364 (2000).

    Article  CAS  Google Scholar 

  26. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl. Acad. Sci. USA 93, 11173–11178 (1996).

    Article  CAS  Google Scholar 

  27. Nikolic, M., Dudek, H., Kwon, Y.T., Ramos, Y.F. & Tsai, L.H. The Cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev. 10, 816–825 (1996).

    Article  CAS  Google Scholar 

  28. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002).

    Article  CAS  Google Scholar 

  29. Carroll, R.C. & Zukin, R.S. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci. 25, 571–577 (2002).

    Article  CAS  Google Scholar 

  30. Gong, X. et al. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33–46 (2003).

    Article  CAS  Google Scholar 

  31. Mitani, A. et al. Postischemic enhancements of N-methyl-D-aspartic acid (NMDA) and non-NMDA receptor-mediated responses in hippocampal CA1 pyramidal neurons. J. Cereb. Blood Flow Metab. 18, 1088–1098 (1998).

    Article  CAS  Google Scholar 

  32. Andine, P., Jacobson, I. & Hagberg, H. Calcium uptake evoked by electrical stimulation is enhanced postischemically and precedes delayed neuronal death in CA1 of rat hippocampus: involvement of N-methyl-D-aspartate receptors. J. Cereb. Blood Flow. Metab. 8, 799–807 (1988).

    Article  CAS  Google Scholar 

  33. Kirino, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 239, 57–69 (1982).

    Article  CAS  Google Scholar 

  34. Benveniste, H., Drejer, J., Schousboe, A. & Diemer, N.H. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374 (1984).

    Article  CAS  Google Scholar 

  35. Hagberg, H. et al. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J. Cereb. Blood Flow Metab. 5, 413–419 (1985).

    Article  CAS  Google Scholar 

  36. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    Article  CAS  Google Scholar 

  37. Brenman, J.E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).

    Article  CAS  Google Scholar 

  38. Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D.S. & Snyder, S.H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88, 6368–6371 (1991).

    Article  CAS  Google Scholar 

  39. Wang, F., O'Hare, M.J. & Park, D.S. Cyclin-dependent kinases and stroke. Expert. Opin. Ther. Targets 5, 557–567 (2001).

    Article  CAS  Google Scholar 

  40. Neumar, R.W. et al. Calpain activity in the rat brain after transient forebrain ischemia. Exp. Neurol. 170, 27–35 (2001).

    Article  CAS  Google Scholar 

  41. Liu, H.N., Giasson, B.I., Mushynski, W.E. & Almazan, G. AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves for radical generation and activation of JNK, calpain and caspase 3. J. Neurochem. 82, 398–409 (2002).

    Article  CAS  Google Scholar 

  42. Minger, S.L. et al. Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia. Brain Res. 810, 181–199 (1998).

    Article  CAS  Google Scholar 

  43. Jonas, P., & Burnashev, N. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15, 987–990 (1995).

    Article  CAS  Google Scholar 

  44. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  Google Scholar 

  45. Gorter, J.A. et al. Global ischemia induces downregulation of Glur2 mRNA and increases AMPA receptor-mediated Ca2+ influx in hippocampal CA1 neurons of gerbil. J. Neurosci. 17, 6179–6188 (1997).

    Article  CAS  Google Scholar 

  46. Pellegrini-Giampietro, D.E., Gorter, J.A., Bennett, M.V & Zukin, R.S. The GluR2 (GluR-B) hypothesis: Ca2+-permeable AMPA receptors in neurological disorders. Trends Neurosci. 20, 464–470 (1997).

    Article  CAS  Google Scholar 

  47. Zhu, D.Y., Liu, S.H., Sun, S. & Lu, Y.M. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J. Neurosci. 23, 223–239 (2003).

    Article  CAS  Google Scholar 

  48. Liu, S.H., Wang, J., Zhu, D.Y., Fu, Y.P. & Lu, Y.M. Generation of functional inhibitory neurons in the adult rat hippocampus. J. Neurosci. 23, 732–736 (2003).

    Article  Google Scholar 

  49. Wang, J. et al. Interaction of calcineurin and type-A GABA receptor γ2 subunits produces long-term depression at CA1 inhibitory synapses. J. Neurosci. 23, 826–836 (2003).

    Article  CAS  Google Scholar 

  50. Carlin, R.K., Grab, D.J., Cohen, R.S. & Siekevitz, P. Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J. Cell Biol. 86, 831–845 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (to Y.M.L.) from the Canadian Institute of Health Research, the Heart and Stroke Foundation (Canada), the Alberta Heritage Foundation for Medical Research, the Canada Foundation for Innovation and the Alberta Department of Innovation and Science. We thank K. Lukowiak for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YouMing Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Liu, S., Fu, Y. et al. Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6, 1039–1047 (2003). https://doi.org/10.1038/nn1119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing