Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Nicotine amplifies reward-related dopamine signals in striatum

Abstract

Reward-seeking behaviors depend critically on dopamine signaling—dopamine neurons encode reward-related information by switching from tonic to phasic (burst-like) activity. Using guinea pig brain slices, we show that nicotine, like cocaine and amphetamine, acts directly in striatum where it enhances dopamine release during phasic but not tonic activity. This amplification provides a mechanism for nicotine facilitation of reward-related dopamine signals, including responses to other primary reinforcers that govern nicotine dependence in smokers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nicotine enhances the frequency-sensitivity of dopamine release and phasic-versus-tonic contrast.
Figure 2: Nicotine gates dopamine release probability to increase release during burst-like activity.
Figure 3: Nicotine in striatum switches the 'frequency filtering' of dopamine release.

Similar content being viewed by others

References

  1. Schultz, W. Neuron 36, 241–263 (2002).

    Article  CAS  Google Scholar 

  2. Reynolds, J.N., Hyland, B.I. & Wickens, J.R. Nature 413, 67–70 (2001).

    Article  CAS  Google Scholar 

  3. Di Chiara, G. & Imperato, A. Proc. Natl. Acad. Sci. USA 85, 5274–5278 (1988).

    Article  CAS  Google Scholar 

  4. Pidoplichko, V.I., DeBiasi, M., Williams, J.T. & Dani, J.A. Nature 390, 401–404 (1997).

    Article  CAS  Google Scholar 

  5. Zhou, F.M., Liang, Y. & Dani, J.A. Nat. Neurosci. 4, 1224–1229 (2001).

    Article  CAS  Google Scholar 

  6. Cragg, S.J. J. Neurosci. 23, 4378–4385 (2003).

    Article  CAS  Google Scholar 

  7. Schultz, W. J. Neurophysiol. 56, 1439–1461 (1986).

    Article  CAS  Google Scholar 

  8. Hyland, B.I., Reynolds, J.N.J., Hay, J., Perk, C.G. & Miller, R. Neuroscience 114, 475–492 (2002).

    Article  CAS  Google Scholar 

  9. Picciotto, M.R. et al. Nature 391, 173–177 (1998).

    Article  CAS  Google Scholar 

  10. Jones, I.W., Bolam, J.P. & Wonnacott, S. J. Comp. Neurol. 439, 235–247 (2001).

    Article  CAS  Google Scholar 

  11. Thomson, A.M. Prog. Neurobiol. 62, 159–196 (2000).

    Article  CAS  Google Scholar 

  12. Nisell, M., Nomikos, G.G. & Svensson, T.H. Pharmacol. Toxicol. 75, 348–352 (1994).

    Article  CAS  Google Scholar 

  13. Caggiula, A.R. et al. Pharmacol. Biochem. Behav. 70, 515–530 (2001).

    Article  CAS  Google Scholar 

  14. Grenhoff, J., Aston-Jones, G. & Svensson, T.H. Acta. Physiol. Scand. 128, 351–358 (1986).

    Article  CAS  Google Scholar 

  15. Mansvelder, H.D., Keath, J.R. & McGehee, D.S. Neuron 33, 905–919 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by a Beit Memorial Fellowship and the Michael J. Fox Foundation (S.J.C.), as well as the US/UK Fulbright Commission and the National Institutes of Health (M.E.R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie J Cragg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Frequency sensitivity following nAChR desensitization by nicotine has upper limit. Nicotine increased paired-pulse ratios (P2/P1) (mean ± SEM) to values that depend inversely on pulse interval (high-pass filter) at intervals ≥ 10 ms (also Fig. 2). At shorter inter-pulse intervals, e.g. 5 ms, corresponding to 200 Hz, this trend failed and P2/P1 was depressed, consistent with a refractory period for release or action potential generation within 5 ms after P1 (n = 4-34) (JPG 35 kb)

Supplementary Methods (PDF 17 kb)

Supplementary Note (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, M., Cragg, S. Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 7, 583–584 (2004). https://doi.org/10.1038/nn1244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing