Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of ion channel localization and phosphorylation by neuronal activity

Abstract

Voltage-dependent Kv2.1 K+ channels, which mediate delayed rectifier Kv currents (IK), are expressed in large clusters on the somata and dendrites of principal pyramidal neurons, where they regulate neuronal excitability. Here we report activity-dependent changes in the localization and biophysical properties of Kv2.1. In the kainate model of continuous seizures in rat, we find a loss of Kv2.1 clustering in pyramidal neurons in vivo. Biochemical analysis of Kv2.1 in the brains of these rats shows a marked dephosphorylation of Kv2.1. In cultured rat hippocampal pyramidal neurons, glutamate stimulation rapidly causes dephosphorylation of Kv2.1, translocation of Kv2.1 from clusters to a more uniform localization, and a shift in the voltage-dependent activation of IK. An influx of Ca2+ leading to calcineurin activation is both necessary and sufficient for these effects. Our finding that neuronal activity modifies the phosphorylation state, localization and function of Kv2.1 suggests an important link between excitatory neurotransmission and the intrinsic excitability of pyramidal neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kainate-induced seizures lead to translocation of Kv2.1 in vivo.
Figure 2: Glutamate-induced lateral translocation of Kv2.1.
Figure 3: Glutamate-induced changes in localization of Kv2.1.
Figure 4: Activity-dependent changes in Kv2.1 phosphorylation in vivo and in vitro.
Figure 5: Ca2+ influx is essential for glutamate-induced dephosphorylation of Kv2.1.
Figure 6: Analysis of the signaling pathway involved in glutamate-induced dephosphorylation and translocation of Kv2.1.
Figure 7: Neuronal activity alters the properties of IK current in neurons.

Similar content being viewed by others

References

  1. Trimmer, J.S. & Rhodes, K.J. Localization of voltage-gated ion channels in mammalian brain. Annu. Rev. Physiol. 66, 477–519 (2004).

    Article  CAS  Google Scholar 

  2. Hausser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  CAS  Google Scholar 

  3. Stuart, G., Spruston, N., Sakmann, B. & Hausser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).

    Article  CAS  Google Scholar 

  4. Bekkers, J.M. Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. (Lond.) 525, 611–620 (2000).

    Article  CAS  Google Scholar 

  5. Du, J., Haak, L.L., Phillips-Tansey, E., Russell, J.T. & McBain, C.J. Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. J. Physiol. (Lond.) 522, 19–31 (2000).

    Article  CAS  Google Scholar 

  6. Korngreen, A. & Sakmann, B. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J. Physiol. (Lond.) 525, 621–639 (2000).

    Article  CAS  Google Scholar 

  7. Martina, M., Schultz, J.H., Ehmke, H., Monyer, H. & Jonas, P. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J. Neurosci. 18, 8111–8125 (1998).

    Article  CAS  Google Scholar 

  8. Murakoshi, H. & Trimmer, J.S. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J. Neurosci. 19, 1728–1735 (1999).

    Article  CAS  Google Scholar 

  9. Malin, S.A. & Nerbonne, J.M. Delayed rectifier K+ currents, IK, are encoded by Kv2 α-subunits and regulate tonic firing in mammalian sympathetic neurons. J. Neurosci. 22, 10094–10105 (2002).

    Article  CAS  Google Scholar 

  10. Pal, S., Hartnett, K.A., Nerbonne, J.M., Levitan, E.S. & Aizenman, E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J. Neurosci. 23, 4798–4802 (2003).

    Article  CAS  Google Scholar 

  11. Trimmer, J.S. Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. Proc. Natl. Acad. Sci. USA 88, 10764–10768 (1991).

    Article  CAS  Google Scholar 

  12. Scannevin, R.H., Murakoshi, H., Rhodes, K.J. & Trimmer, J.S. Identification of a cytoplasmic domain important in the polarized expression and clustering of the Kv2.1 K+ channel. J. Cell Biol. 135, 1619–1632 (1996).

    Article  CAS  Google Scholar 

  13. Du, J., Tao-Chang, J.-H., Zerfas, P. & McBain, C.J. The K+ channel, Kv2.1, is apposed to astrocytic processes and is associated with inhibitory postsynaptic membranes in hippocampal and cortical principal neurons and inhibitory interneurons. Neuroscience 84, 37–48 (1998).

    Article  CAS  Google Scholar 

  14. Colbert, C.M. & Pan, E. Arachidonic acid reciprocally alters the availability of transient and sustained dendritic K+ channels in hippocampal CA1 pyramidal neurons. J. Neurosci. 19, 8163–8171 (1999).

    Article  CAS  Google Scholar 

  15. Kang, J., Huguenard, J.R. & Prince, D.A. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. J. Neurophysiol. 83, 70–80 (2000).

    Article  CAS  Google Scholar 

  16. Hausser, M. Storing memories in dendritic channels. Nat. Neurosci. 7, 98–100 (2004).

    Article  Google Scholar 

  17. Racine, R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32, 281–294 (1972).

    Article  CAS  Google Scholar 

  18. Lim, S.T., Antonucci, D.E., Scannevin, R.H. & Trimmer, J.S. A novel targeting signal for proximal clustering of the Kv2.1 K+ channel in hippocampal neurons. Neuron 25, 385–397 (2000).

    Article  CAS  Google Scholar 

  19. Sun, D.A., Sombati, S. & DeLorenzo, R.J. Glutamate injury-induced epileptogenesis in hippocampal neurons: an in vitro model of stroke-induced 'epilepsy'. Stroke 32, 2344–2350 (2001).

    Article  CAS  Google Scholar 

  20. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  21. Hasbani, M.J., Schlief, M.L., Fisher, D.A. & Goldberg, M.P. Dendritic spines lost during glutamate receptor activation reemerge at original sites of synaptic contact. J. Neurosci. 21, 2393–2403 (2001).

    Article  CAS  Google Scholar 

  22. Murakoshi, H., Shi, G., Scannevin, R.H. & Trimmer, J.S. Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent activation. Mol. Pharmacol. 52, 821–828 (1997).

    Article  CAS  Google Scholar 

  23. Misonou, H. & Trimmer, J.S. Determinants of potassium channel surface expression and localization in mammalian neurons. Crit. Rev. Biochem. Mol. Biol. (in press).

  24. Chung, H.J., Xia, J., Scannevin, R.H., Zhang, X. & Huganir, R.L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain–containing proteins. J. Neurosci. 20, 7258–7267 (2000).

    Article  CAS  Google Scholar 

  25. Chung, H.J., Steinberg, J.P., Huganir, R.L. & Linden, D.J. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300, 1751–1755 (2003).

    Article  CAS  Google Scholar 

  26. Cohen, N.A., Brenman, J.E., Snyder, S.H. & Bredt, D.S. Binding of the inward rectifier K+ channel Kir2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17, 759–767 (1996).

    Article  CAS  Google Scholar 

  27. Hall, R.A. et al. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc. Natl. Acad. Sci. USA 95, 8496–8501 (1998).

    Article  CAS  Google Scholar 

  28. Raghuram, V., Hormuth, H. & Foskett, J.K. A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions. Proc. Natl. Acad. Sci. USA 100, 9620–9625 (2003).

    Article  CAS  Google Scholar 

  29. Leonard, A.S. et al. cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. Proc. Natl. Acad. Sci. USA 100, 2029–2034 (2003).

    Article  CAS  Google Scholar 

  30. VanDongen, A.M., Frech, G.C., Drewe, J.A., Joho, R.H. & Brown, A.M. Alteration and restoration of K+ channel function by deletions at the N- and C-termini. Neuron 5, 433–443 (1990).

    Article  CAS  Google Scholar 

  31. Deisseroth, K. & Tsien, R.W. Dynamic multiphosphorylation passwords for activity-dependent gene expression. Neuron 34, 179–182 (2002).

    Article  CAS  Google Scholar 

  32. Westenbroek, R.E., Ahlijanian, M.K. & Catterall, W.A. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347, 281–284 (1990).

    Article  CAS  Google Scholar 

  33. Cameron, A.M. et al. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor–FKBP12 complex modulates Ca2+ flux. Cell 83, 463–472 (1995).

    Article  CAS  Google Scholar 

  34. Levitan, I.B. Modulation of ion channels by protein phosphorylation. How the brain works. Adv. Sec. Mess. Phosph. Res. 33, 3–22 (1999).

    Article  CAS  Google Scholar 

  35. Malenka, R.C. Synaptic plasticity and AMPA receptor trafficking. Ann. NY Acad. Sci. 1003, 1–11 (2003).

    Article  CAS  Google Scholar 

  36. Deisseroth, K., Mermelstein, P.G., Xia, H. & Tsien, R.W. Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol. 13, 354–365 (2003).

    Article  CAS  Google Scholar 

  37. Antonucci, D.E., Lim, S.T., Vassanelli, S. & Trimmer, J.S. Dynamic localization and clustering of dendritic Kv2.1 voltage-dependent potassium channels in developing hippocampal neurons. Neuroscience 108, 69–81 (2001).

    Article  CAS  Google Scholar 

  38. Banker, G.A. & Cowan, W.M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 126, 397–425 (1977).

    Article  CAS  Google Scholar 

  39. Shi, G., Kleinklaus, A.K., Marrion, N.V. & Trimmer, J.S. Properties of Kv2.1 K+ channels expressed in transfected mammalian cells. J. Biol. Chem. 269, 23204–23211 (1994).

    CAS  PubMed  Google Scholar 

  40. Rhodes, K.J. et al. Association and colocalization of the Kvβ1 and Kvβ2 β-subunits with Kv1 α-subunits in mammalian brain K+ channel complexes. J. Neurosci. 17, 8246–8258 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Illausky for technical assistance; G. Mandel for allowing use of equipment; P. Brehm for chemical reagents; L. Taylor for assistance in live-cell imaging; and A.C. Bonham, J. Engebrecht, M.N. Rasband and K.J. Rhodes for critically reading the manuscript. This work was supported by the National Institute of Neurological Disorders and Stroke (NIH/NINDS; grants NS42225 to J.S.T. and NS39943 to A.E.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Misonou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Glutamate-induced changes in localization of Kv2.1. (JPG 19 kb)

Supplementary Fig. 2

Time-lapse imaging of GFP-Kv2.1 in hippocampal neurons after stimulation with glutamate. (JPG 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misonou, H., Mohapatra, D., Park, E. et al. Regulation of ion channel localization and phosphorylation by neuronal activity. Nat Neurosci 7, 711–718 (2004). https://doi.org/10.1038/nn1260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing