Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus

Abstract

In the dorsal cochlear nucleus, long-term synaptic plasticity can be induced at the parallel fiber inputs that synapse onto both fusiform principal neurons and cartwheel feedforward inhibitory interneurons. Here we report that in mouse fusiform cells, spikes evoked 5 ms after parallel-fiber excitatory postsynaptic potentials (EPSPs) led to long-term potentiation (LTP), whereas spikes evoked 5 ms before EPSPs led to long-term depression (LTD) of the synapse. The EPSP-spike protocol led to LTD in cartwheel cells, but no synaptic changes resulted from the reverse sequence (spike-EPSP). Plasticity in fusiform and cartwheel cells therefore followed Hebbian and anti-Hebbian learning rules, respectively. Similarly, spikes generated by summing EPSPs from different groups of parallel fibers produced LTP in fusiform cells, and LTD in cartwheel cells. LTD could also be induced in glutamatergic inputs of cartwheel cells by pairing parallel-fiber EPSPs with depolarizing glycinergic PSPs from neighboring cartwheel cells. Thus, synaptic learning rules vary with the postsynaptic cell, and may require the interaction of different transmitter systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parallel fibers and their targets in the DCN.
Figure 2: STDP in fusiform cells.
Figure 3: STDP in cartwheel cells.
Figure 4: Frequency-dependence of STDP.
Figure 5: STDP induced by pairing glutamatergic inputs from different groups of parallel fibers.
Figure 6: Excitatory glycinergic connections among cartwheel cells.
Figure 7: Pairing glutamatergic inputs from parallel fibers and glycinergic inputs from cartwheel cells triggered LTD.

References

  1. Young, E.D. & Davis, K.A. Circuitry and functions of the dorsal cochlear nucleus. in Integrative Functions of the Mammalian Auditory Pathway (eds. Oertel, D., Popper, A.N. & Fay, R.R.) 160–206 (Springer-Verlag, New York, 2002).

    Chapter  Google Scholar 

  2. Oertel, D. & Young, E.D. What's a cerebellar circuit doing in the auditory system? Trends Neurosci. 27, 104–110 (2004).

    Article  CAS  Google Scholar 

  3. Sutherland, D.P., Masterton, R.B. & Glendenning, K.K. Role of acoustic striae in hearing: reflexive responses to elevated sound-sources. Behav. Brain Res. 97, 1–12 (1998).

    Article  CAS  Google Scholar 

  4. May, B.J. Role of the dorsal cochlear nucleus in the sound localization behavior of cats. Hear. Res. 148, 74–87 (2000).

    Article  CAS  Google Scholar 

  5. Golding, N.L. & Oertel, D. Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus. J. Neurophysiol. 78, 248–260 (1997).

    Article  CAS  Google Scholar 

  6. Golding, N.L. & Oertel, D. Context-dependent synaptic action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus. J. Neurosci. 16, 2208–2219 (1996).

    Article  CAS  Google Scholar 

  7. Davis, K.A., Miller, R.L. & Young, E.D. Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus. J. Neurophysiol. 76, 3012–3024 (1996).

    Article  CAS  Google Scholar 

  8. Fujino, K. & Oertel, D. Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proc. Natl. Acad. Sci. USA 100, 265–270 (2003).

    Article  CAS  Google Scholar 

  9. Bell, C.C., Han, V.Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997).

    Article  CAS  Google Scholar 

  10. Bi, G.Q. & Poo, M.M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    Article  CAS  Google Scholar 

  11. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  12. Sjostrom, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

    Article  CAS  Google Scholar 

  13. Han, V.Z., Grant, K. & Bell, C.C. Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27, 611–622 (2000).

    Article  CAS  Google Scholar 

  14. Roberts, P.D. & Bell, C.C. Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. J. Comput. Neurosci. 9, 67–83 (2000).

    Article  CAS  Google Scholar 

  15. Bell, C.C. Evolution of cerebellum-like structures. Brain Behav. Evol. 59, 312–326 (2002).

    Article  Google Scholar 

  16. Manis, P.B., Spirou, G.A., Wright, D.D., Paydar, S. & Ryugo, D.K. Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus. J. Comp. Neurol. 348, 261–276 (1994).

    Article  CAS  Google Scholar 

  17. Zhang, S. & Oertel, D. Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. J. Neurophysiol. 69, 1384–1397 (1993).

    Article  CAS  Google Scholar 

  18. Debanne, D., Gahwiler, B.H. & Thompson, S.M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. 507, 237–247 (1998).

    Article  CAS  Google Scholar 

  19. Feldman, D.E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45–56 (2000).

    Article  CAS  Google Scholar 

  20. Molitor, S.C. & Manis, P.B. Dendritic Ca2+ transients evoked by action potentials in rat dorsal cochlear nucleus pyramidal and cartwheel neurons. J. Neurophysiol. 89, 2225–2237 (2003).

    Article  CAS  Google Scholar 

  21. Berrebi, A.S. & Mugnaini, E. Distribution and targets of the cartwheel cell axon in the dorsal cochlear nucleus of the guinea pig. Anat. Embryol. 183, 427–454 (1991).

    Article  CAS  Google Scholar 

  22. Ehrlich, I., Lohrke, S. & Friauf, E. Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl regulation. J. Physiol. 520, 121–137 (1999).

    Article  CAS  Google Scholar 

  23. Maccaferri, G., Toth, K. & McBain, C.J. Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368–1370 (1998).

    Article  CAS  Google Scholar 

  24. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  Google Scholar 

  25. Sjostrom, P.J. & Nelson, S.B. Spike timing, calcium signals and synaptic plasticity. Curr. Opin. Neurobiol. 12, 305–314 (2002).

    Article  CAS  Google Scholar 

  26. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  27. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A. & Poo, M. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998).

    Article  CAS  Google Scholar 

  28. Egger, V., Feldmeyer, D. & Sakmann, B. Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nat. Neurosci. 2, 1098–1105 (1999).

    Article  CAS  Google Scholar 

  29. Tao, H.W., Zhang, L.I., Engert, F. & Poo, M. Emergence of input specificity of LTP during development of retinotectal connections in vivo. Neuron 31, 569–580 (2001).

    Article  CAS  Google Scholar 

  30. Pouille, F. et al. Dendro-somatic distribution of calcium-mediated electrogenesis in Purkinje cells from rat cerebellar slice cultures. J. Physiol. 527, 265–282 (2000).

    Article  CAS  Google Scholar 

  31. Neveu, D. & Zucker, R.S. Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16, 619–629 (1996).

    Article  CAS  Google Scholar 

  32. Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA 86, 9574–9578 (1989).

    Article  CAS  Google Scholar 

  33. Ryugo, D.K., Pongstaporn, T., Wright, D.D. & Sharp, A.H. Inositol 1,4,5-trisphosphate receptors: immunocytochemical localization in the dorsal cochlear nucleus. J. Comp. Neurol. 358, 102–118 (1995).

    Article  CAS  Google Scholar 

  34. Bilak, S.R. & Morest, D.K. Differential expression of the metabotropic glutamate receptor mGluR1alpha by neurons and axons in the cochlear nucleus: in situ hybridization and immunohistochemistry. Synapse 28, 251–270 (1998).

    Article  CAS  Google Scholar 

  35. Molitor, S.C. & Manis, P.B. Voltage-gated Ca2+ conductances in acutely isolated guinea pig dorsal cochlear nucleus neurons. J. Neurophysiol. 81, 985–998 (1999).

    Article  CAS  Google Scholar 

  36. Yao, H. & Dan, Y. Stimulus timing-dependent plasticity in cortical processing of orientation. Neuron 32, 315–323 (2001).

    Article  CAS  Google Scholar 

  37. Chavas, J. & Marty, A. Coexistence of excitatory and inhibitory GABA synap1ses in the cerebellar interneuron network. J. Neurosci. 23, 2019–2031 (2003).

    Article  CAS  Google Scholar 

  38. Veruki, M.L. & Hartveit, E. Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. J. Neurosci. 22, 10558–10566 (2002).

    Article  CAS  Google Scholar 

  39. Beierlein, M., Gibson, J.R. & Connors, B.W. A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3, 904–910 (2000).

    Article  CAS  Google Scholar 

  40. Rumsey, C.C. & Abbott, L.F. Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. J. Neurophysiol. 91, 2273–2280 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant NS28901. We thank G. Awatramani, C. Bell, A. Klug, T. Lu and N. Golding for discussions about this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanos Tzounopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzounopoulos, T., Kim, Y., Oertel, D. et al. Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7, 719–725 (2004). https://doi.org/10.1038/nn1272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing