Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optimality principles in sensorimotor control

Abstract

The sensorimotor system is a product of evolution, development, learning and adaptation—which work on different time scales to improve behavioral performance. Consequently, many theories of motor function are based on 'optimal performance': they quantify task goals as cost functions, and apply the sophisticated tools of optimal control theory to obtain detailed behavioral predictions. The resulting models, although not without limitations, have explained more empirical phenomena than any other class. Traditional emphasis has been on optimizing desired movement trajectories while ignoring sensory feedback. Recent work has redefined optimality in terms of feedback control laws, and focused on the mechanisms that generate behavior online. This approach has allowed researchers to fit previously unrelated concepts and observations into what may become a unified theoretical framework for interpreting motor function. At the heart of the framework is the relationship between high-level goals, and the real-time sensorimotor control strategies most suitable for accomplishing those goals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of open- and closed-loop optimization.
Figure 2: Minimal intervention principle.
Figure 3: Application of optimal feedback control to a redundant stochastic system.

References

  1. Chow, C.K. & Jacobson, D.H. Studies of human locomotion via optimal programming. Math. Biosci. 10, 239–306 (1971).

    Google Scholar 

  2. Hatze, H. & Buys, J.D. Energy-optimal controls in the mammalian neuromuscular system. Biol. Cybern. 27, 9–20 (1977).

    CAS  PubMed  Google Scholar 

  3. Davy, D.T. & Audu, M.L. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomech. 20, 187–201 (1987).

    CAS  PubMed  Google Scholar 

  4. Collins, J.J. The redundant nature of locomotor optimization laws. J. Biomech. 28, 251–267 (1995).

    CAS  PubMed  Google Scholar 

  5. Popovic, D., Stein, R.B., Oguztoreli, N., Lebiedowska, M. & Jonic, S. Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Trans. Rehabil. Eng. 7, 69–79 (1999).

    CAS  PubMed  Google Scholar 

  6. Anderson, F.C. & Pandy, M.G. Dynamic optimization of human walking. J. Biomech. Eng. 123, 381–390 (2001).

    CAS  PubMed  Google Scholar 

  7. Rasmussen, J., Damsgaard, M. & Voigt, M. Muscle recruitment by the min/max criterion—a comparative numerical study. J. Biomech. 34, 409–415 (2001).

    CAS  PubMed  Google Scholar 

  8. Nelson, W.L. Physical principles for economies of skilled movements. Biol. Cybern. 46, 135–147 (1983).

    CAS  PubMed  Google Scholar 

  9. Hogan, N. An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 (1984).

    CAS  PubMed  Google Scholar 

  10. Flash, T. & Hogan, N. The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985).

    CAS  PubMed  Google Scholar 

  11. Pandy, M.G., Garner, B.A. & Anderson, F.C. Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. J. Biomech. Eng. 117, 15–26 (1995).

    CAS  PubMed  Google Scholar 

  12. Todorov, E. & Jordan, M.I. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J. Neurophysiol. 80, 696–714 (1998).

    CAS  PubMed  Google Scholar 

  13. Smeets, J.B. & Brenner, E. A new view on grasping. Motor Control 3, 237–271 (1999).

    CAS  PubMed  Google Scholar 

  14. Uno, Y., Kawato, M. & Suzuki, R. Formation and control of optimal trajectory in human multijoint arm movement: Minimum torque-change model. Biol. Cybern. 61, 89–101 (1989).

    CAS  PubMed  Google Scholar 

  15. Nakano, E. et al. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J. Neurophysiol. 81, 2140–2155 (1999).

    CAS  PubMed  Google Scholar 

  16. Harris, C.M. & Wolpert, D.M. Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998).

    CAS  Google Scholar 

  17. Harwood, M.R., Mezey, L.E. & Harris, C.M. The spectral main sequence of human saccades. J. Neurosci. 19, 9098–9106 (1999).

    CAS  PubMed  Google Scholar 

  18. Hamilton, A.F. & Wolpert, D.M. Controlling the statistics of action: obstacle avoidance. J. Neurophysiol. 87, 2434–2440 (2002).

    Google Scholar 

  19. Pandy, M.G., Zajac, F.E., Sim, E. & Levine, W.S. An optimal control model for maximum-height human jumping. J. Biomech. 23, 1185–1198 (1990).

    CAS  PubMed  Google Scholar 

  20. Valero-Cuevas, F.J., Zajac, F.E. & Burgar, C.G. Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31, 693–703 (1998).

    CAS  PubMed  Google Scholar 

  21. Todorov, E. Cosine tuning minimizes motor errors. Neural Comput. 14, 1233–1260 (2002).

    PubMed  Google Scholar 

  22. Fagg, A.H., Shah, A. & Barto, A.G. A computational model of muscle recruitment for wrist movements. J. Neurophysiol. 88, 3348–3358 (2002).

    PubMed  Google Scholar 

  23. Ivanchenko, V. & Jacobs, R.A. A developmental approach aids motor learning. Neural Comput. 15, 2051–2065 (2003).

    PubMed  Google Scholar 

  24. Loeb, G.E., Levine, W.S. & He, J. Understanding sensorimotor feedback through optimal control. Cold Spring Harb. Symp. Quant. Biol. 55, 791–803 (1990).

    CAS  PubMed  Google Scholar 

  25. Hoff, B. A Computational Description of the Organization of Human Reaching and Prehension. Ph.D. Thesis, Univ. Southern California (1992).

    Google Scholar 

  26. Hoff, B. & Arbib, M.A. Models of trajectory formation and temporal interaction of reach and grasp. J. Mot. Behav. 25, 175–192 (1993).

    PubMed  Google Scholar 

  27. Kuo, A.D. An optimal control model for analyzing human postural balance. IEEE Trans. Biomed. Eng. 42, 87–101 (1995).

    CAS  PubMed  Google Scholar 

  28. Shimansky, Y.P. Spinal motor control system incorporates an internal model of limb dynamics. Biol. Cybern. 83, 379–389 (2000).

    CAS  PubMed  Google Scholar 

  29. Ijspeert, A.J. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol. Cybern. 84, 331–348 (2001).

    CAS  PubMed  Google Scholar 

  30. Todorov, E. & Jordan, M. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).

    CAS  PubMed  Google Scholar 

  31. Shimansky, Y.P., Kang, T. & He, J.P. A novel model of motor learning capable of developing an optimal movement control law online from scratch. Biol. Cybern. 90, 133–145 (2004).

    PubMed  Google Scholar 

  32. Li, W., Todorov, E. & Pan, X. Hierarchical optimal control of redundant biomechanical systems. in Proceedings of the 26th Annual International Conferences of the IEEE Engineering in Medicine and Biology Society (IEEE Press, ISSN 1094-687X, in the press).

  33. Marr, D. Vision (Freeman, San Francisco, 1982).

    Google Scholar 

  34. Feldman, A.G. & Levin, M.F. The origin and use of positional frames of reference in motor control. Behav. Brain Sci. 18, 723–744 (1995).

    Google Scholar 

  35. Bizzi, E., Hogan, N., Mussa-Ivaldi, F.A. & Giszter, S. Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav. Brain Sci. 15, 603–613 (1992).

    CAS  PubMed  Google Scholar 

  36. Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  37. Sporns, O. & Edelman, G.M. Solving Bernstein's problem: a proposal for the development of coordinated movement by selection. Child Dev. 64, 960–981 (1993).

    CAS  PubMed  Google Scholar 

  38. Kalaska, J., Sergio, L.E. & Cisek, P. in Sensory Guidance of Movement: Novartis Foundation Symposium (ed. Glickstein, M.) 176–201 (Wiley, Chichester, UK, 1998).

    Google Scholar 

  39. Bernstein, N.I. The Coordination and Regulation of Movements (Pergamon, Oxford, 1967).

    Google Scholar 

  40. Loeb, G.E., Brown, I.E. & Cheng, E.J. A hierarchical foundation for models of sensorimotor control. Exp. Brain Res. 126, 1–18 (1999).

    CAS  PubMed  Google Scholar 

  41. Todorov, E. & Ghahramani, Z. Unsupervised learning of sensory-motor primitives. in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Biology and Medicine Society 1750–1753 (IEEE Press, ISSN 1094-687X, 2003).

    Google Scholar 

  42. Kalman, R. When is a linear control system optimal? Trans. AMSE J. Basic Eng. Ser. D 86, 51–60 (1964).

    Google Scholar 

  43. Moylan, P. & Anderson, B. Nonlinear regulator theory and an inverse optimal control problem. IEEE Trans. Automatic Control AC-18, 460–465 (1973).

  44. Ng, A. & Russell, S. Algorithms for inverse reinforcement learning. in Proceedings of the 17th International Conference on Machine Learning (Morgan Kaufmann, San Francisco, 2000).

  45. Scott, S. Optimal feedback control and the neural basis of volitional motor control. Nat. Neurosci. Rev. 5, 534–546 (2004).

    Google Scholar 

  46. Kording, K. & Wolpert, D. The loss function of sensorimotor learning. Proc. Natl. Acad. Sci. USA 101, 9839–9842 (2004).

    PubMed  Google Scholar 

  47. Lacquaniti, F., Terzuolo, C. & Viviani, P. The law relating the kinematic and figural aspects of drawing movements. Acta Psychol. 54, 115–130 (1983).

    CAS  Google Scholar 

  48. Sutton, G.G. & Sykes, K. The variation of hand tremor with force in healthy subjects. J. Physiol. (Lond.) 191, 699–711 (1967).

    CAS  Google Scholar 

  49. Schmidt, R.A., Zelaznik, H., Hawkins, B., Frank, J.S. & Quinn, J.T. Jr. Motor-output variability: a theory for the accuracy of rapid notor acts. Psychol. Rev. 86, 415–451 (1979).

    Google Scholar 

  50. Sabes, P.N., Jordan, M.I. & Wolpert, D.M. The role of inertial sensitivity in motor planning. J. Neurosci. 18, 5948–5957 (1998).

    CAS  PubMed  Google Scholar 

  51. Rosenbaum, D.A. Human Motor Control (Academic, San Diego, 1991).

    Google Scholar 

  52. Burdet, E., Osu, R., Franklin, D.W., Milner, T.E. & Kawato, M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414, 446–449 (2001).

    CAS  PubMed  Google Scholar 

  53. Hoffman, D.S. & Strick, P.L. Step-tracking movements of the wrist. IV. Muscle activity associated with movements in different directions. J. Neurophysiol. 81, 319–333 (1999).

    CAS  PubMed  Google Scholar 

  54. Zhu, G., Rotea, M.A. & Skelton, R. A convergent algorithm for the output covariance constraint control problem. Siam J. Control Optimization 35, 341–361 (1997).

    Google Scholar 

  55. Bryson, A. & Ho, Y. Applied Optimal Control (Blaisdell, Waltham, Massachusetts, 1969).

    Google Scholar 

  56. Kirk, D. Optimal Control Theory: An Introduction (Prentice Hall, Englewood Cliffs, New Jersey, 1970).

    Google Scholar 

  57. Davis, M.H. & Vinter, R.B. Stochastic Modelling and Control (Chapman and Hall, London, 1985).

    Google Scholar 

  58. Bertsekas, D. & Tsitsiklis, J. Neuro-Dynamic Programming (Athena Scientific, Belmont, Massachusetts, 1997).

    Google Scholar 

  59. Sutton, R.S. & Barto, A.G. Reinforcement Learning: An Introduction (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  60. Todorov, E. & Li, W. Optimal control methods suitable for biomechanical systems. in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Press, ISSN 1094-687X, 2003).

    Google Scholar 

  61. Li, W. & Todorov, E. Iterative linear quadratic regulator design for nonlinear biological movement systems. in Proceedings of the 1st International Conference on Informatics in Control, Automation, and Robotics (Kluwer, in the press).

  62. Montague, P.R., Dayan, P., Person, C. & Sejnowski, T.J. Bee foraging in uncertain environments using predictive hebbian learning. Nature 377, 725–728 (1995).

    CAS  Google Scholar 

  63. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  Google Scholar 

  64. O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    CAS  PubMed  Google Scholar 

  65. Seymour, B. et al. Temporal difference models describe higher-order learning in humans. Nature 429, 664–667 (2004).

    CAS  PubMed  Google Scholar 

  66. Knill, D. & Richards, W. Perception as Bayesian Inference (Cambridge Univ. Press, 1996).

    Google Scholar 

  67. Wolpert, D., Gharahmani, Z. & Jordan, M. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    CAS  PubMed  Google Scholar 

  68. Kording, K.P. & Wolpert, D.M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

    PubMed  Google Scholar 

  69. Saunders, J.A. & Knill, D.C. Visual feedback control of hand movements. J. Neurosci. 24, 3223–3234 (2004).

    CAS  PubMed  Google Scholar 

  70. Shadmehr, R. & Mussa-Ivaldi, F.A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    CAS  PubMed  Google Scholar 

  71. Flanagan, J.R. & Wing, A.M. The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. J. Neurosci. 17, 1519–1528 (1997).

    CAS  PubMed  Google Scholar 

  72. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999).

    CAS  Google Scholar 

  73. Flanagan, J.R. & Lolley, S. The inertial anisotropy of the arm is accurately predicted during movement planning. J. Neurosci. 21, 1361–1369 (2001).

    CAS  PubMed  Google Scholar 

  74. Li, C.S., Padoa-Schioppa, C. & Bizzi, E. Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30, 593–607 (2001).

    CAS  PubMed  Google Scholar 

  75. Gribble, P.L. & Scott, S.H. Overlap of internal models in motor cortex for mechanical loads during reaching. Nature 417, 938–941 (2002).

    CAS  PubMed  Google Scholar 

  76. Ostry, D.J. & Feldman, A.G. A critical evaluation of the force control hypothesis in motor control. Exp. Brain Res. 153, 275–288 (2003).

    PubMed  Google Scholar 

  77. Thoroughman, K.A. & Shadmehr, R. Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, T., Dordevic, G.S. & Shadmehr, R. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses. Biol. Cybern. 85, 437–448 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Flanagan, J.R., Vetter, P., Johansson, R.S. & Wolpert, D.M. Prediction precedes control in motor learning. Curr. Biol. 13, 146–150 (2003).

    CAS  PubMed  Google Scholar 

  80. Korenberg, A. Computational and Psychophysical Studies of Motor Learning. PhD Thesis, University College London (2003).

    Google Scholar 

  81. Desmurget, M. & Grafton, S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 4, 423–431 (2000).

    CAS  PubMed  Google Scholar 

  82. Gribble, P.L. & Ostry, D.J. Compensation for interaction torques during single- and multijoint limb movement. J. Neurophysiol. 82, 2310–2326 (1999).

    CAS  PubMed  Google Scholar 

  83. Humphrey, D.R. & Reed, D.J. in Advances in Neurology: Motor Control Mechanisms in Health and Disease (ed. Desmedt, J.E) 347–372 (Raven, New York, 1983).

    Google Scholar 

  84. Conditt, M.A. & Mussa-Ivaldi, F.A. Central representation of time during motor learning. Proc. Natl. Acad. Sci. USA 96, 11625–11630 (1999).

    CAS  PubMed  Google Scholar 

  85. Woodworth, R.S. The accuracy of voluntary movement. Psychol. Rev. Monogr. 3 (1899).

  86. Fitts, P. The information capacity of the human motor system in controlling the amplitude of movements. J. Exp. Psychol. 47, 381–391 (1954).

    CAS  PubMed  Google Scholar 

  87. Meyer, D.E., Abrams, R.A., Kornblum, S., Wright, C.E. & Smith, J.E.K. Optimality in human motor performance: Ideal control of rapid aimed movements. Psychol. Rev. 95, 340–370 (1988).

    CAS  PubMed  Google Scholar 

  88. Milner, T.E. & Ijaz, M.M. The effect of accuracy constraints on three-dimensional movement kinematics. Neuroscience 35, 365–374 (1990).

    CAS  PubMed  Google Scholar 

  89. Flash, T. & Henis, E. Arm trajectory modifications during reaching towards visual targets. J. Cogn. Neurosci. 3, 220–230 (1991).

    CAS  PubMed  Google Scholar 

  90. Komilis, E., Pelisson, D. & Prablanc, C. Error processing in pointing at randomly feedback-induced double-step stimuli. J. Motor Behav. 25, 299–308 (1993).

    CAS  Google Scholar 

  91. Todorov, E. & Jordan, M. in Advances in Neural Information Processing Systems vol. 15 (eds. Becker, S., Thrun, S. & Obermayer, K.) 27–34 (MIT Press, Cambridge, Massachusetts, 2002).

    Google Scholar 

  92. Cole, K.J. & Abbs, J.H. Kinematic and electromyographic responses to perturbation of a rapid grasp. J. Neurophysiol. 57, 1498–1510 (1987).

    CAS  PubMed  Google Scholar 

  93. Gracco, V.L. & Abbs, J.H. Dynamic control of the perioral system during speech: kinematic analyses of autogenic and nonautogenic sensorimotor processes. J. Neurophysiol. 54, 418–432 (1985).

    CAS  PubMed  Google Scholar 

  94. Robertson, E.M. & Miall, R.C. Multi-joint limbs permit a flexible response to unpredictable events. Exp. Brain Res. 117, 148–152 (1997).

    CAS  PubMed  Google Scholar 

  95. Scholz, J.P. & Schoner, G. The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126, 289–306 (1999).

    CAS  PubMed  Google Scholar 

  96. Scholz, J.P., Schoner, G. & Latash, M.L. Identifying the control structure of multijoint coordination during pistol shooting. Exp. Brain Res. 135, 382–404 (2000).

    CAS  PubMed  Google Scholar 

  97. Li, Z.M., Latash, M.L. & Zatsiorsky, V.M. Force sharing among fingers as a model of the redundancy problem. Exp. Brain Res. 119, 276–286 (1998).

    CAS  PubMed  Google Scholar 

  98. Gordon, J., Ghilardi, M.F., Cooper, S. & Ghez, C. Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy. Exp. Brain Res. 99, 112–130 (1994).

    CAS  PubMed  Google Scholar 

  99. Messier, J. & Kalaska, J.F. Comparison of variability of initial kinematics and endpoints of reaching movements. Exp. Brain Res. 125, 139–152 (1999).

    CAS  PubMed  Google Scholar 

  100. D'Avella, A., Saltiel, P. & Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6, 300–308 (2003).

  101. Ivanenko, Y.P. et al. Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J. Neurophysiol. 90, 3555–3565 (2003).

    PubMed  Google Scholar 

  102. Latash, M.L. in Motor Control, Today and Tomorrow (eds. Gantchev, G., Mori, S. & Massion, J.) 181–196 (Academic Publishing House “Prof. M. Drinov”, Sofia, 1999).

    Google Scholar 

  103. Nicols, T.R. & Houk, J.C. Improvement in linearity and regulations of stiffness that result from actions of stretch reflex. J. Neurophysiol. 39, 119–142 (1976).

    Google Scholar 

  104. Bernstein, N.I. On the Construction of Movements (Medgiz, Moscow, 1947).

    Google Scholar 

  105. Bernstein, N.I. in Dexterity and its Development (eds. Latash, M.L. & Turvey, M.) 97–170 (Lawrence Erlbaum, Mahwah, New Jersey, 1996).

    Google Scholar 

  106. Cisek, P., Grossberg, S. & Bullock, D. A cortico-spinal model of reaching and proprioception under multiple task constraints. J. Cogn. Neurosci. 10, 425–444 (1998).

    CAS  PubMed  Google Scholar 

  107. Barlow, H. in Sensory Communication (ed. Rosenblith, W.) 217–234 (MIT Press, Cambridge, Massachusetts, 1961).

    Google Scholar 

  108. Olshausen, B.A. & Field, D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996).

    CAS  PubMed  Google Scholar 

  109. Lewicki, M.S. Efficient coding of natural sounds. Nat. Neurosci. 5, 356–363 (2002).

    CAS  PubMed  Google Scholar 

  110. Khatib, O. A unified approach to motion and force control of robotic manipulators: The operational space formulation. IEEE J. Robotics Automation RA-3, 43–53 (1987).

    Google Scholar 

  111. Pratt, J., Chew, C.M., Torres, A., Dilworth, P. & Pratt, G. Virtual model control: An intuitive approach for bipedal locomotion. Intl. J. Robotics Res. 20, 129–143 (2001).

    Google Scholar 

  112. Loeb, G.E., Peck, R.A., Moore, W.H. & Hook, K. BION system for distributed neural prosthetic interfaces. Med. Eng. Physics 23, 9–18 (2001).

    CAS  Google Scholar 

  113. Hinton, G.E. Parallel computations for controlling an arm. J. Motor Behav. 16, 171–194 (1984).

    CAS  Google Scholar 

  114. Pellionisz, A. Coordination: a vector-matrix description of transformations of overcomplete CNS coordinates and a tensorial solution using the Moore-Penrose generalized inverse. J. Theoret. Biol. 110, 353–375 (1984).

    CAS  Google Scholar 

  115. Bullock, D. & Grossberg, S. Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol. Rev. 95, 49–90 (1988).

    CAS  PubMed  Google Scholar 

  116. Torres, E.B. & Zipser, D. Reaching to grasp with a multi-jointed arm. I. Computational model. J. Neurophysiol. 88, 2355–2367 (2002).

    PubMed  Google Scholar 

  117. Camacho, E.F. & Bordons, C. Model Predictive Control (Springer, London, 1999).

    Google Scholar 

  118. Bizzi, E., Accornero, N., Chapple, W. & Hogan, N. Posture control and trajectory formation during arm movement. J. Neurosci. 4, 2738–2744 (1984).

    CAS  PubMed  Google Scholar 

  119. Todorov, E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nat. Neurosci. 3, 391–398 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Loeb and J. Triesch for their comments on the manuscript. This work was supported by US National Institutes of Health grant R01-NS045915.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorov, E. Optimality principles in sensorimotor control. Nat Neurosci 7, 907–915 (2004). https://doi.org/10.1038/nn1309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing