Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation

Abstract

Visual deprivation during a developmental sensitive period markedly alters visual cortical response properties, but the changes in intracortical circuitry that underlie these effects are poorly understood. Here we use a slice preparation of rat primary visual cortex to show that 2 d of prior visual deprivation early in life increases the excitability of layer 4 circuitry. Slice recordings showed that spontaneous activity of layer 4 star pyramidal neurons increased 25-fold after 2 d of visual deprivation between postnatal days (P) 15 and P17. This effect was mediated by increased net excitatory and decreased net inhibitory synaptic drive. Paired recordings showed that excitatory connections between star pyramidal neurons doubled in amplitude, whereas inhibitory connections decreased or increased depending on the interneuron class. These effects reversed when vision was restored. This dynamic adjustment of the excitation-inhibition balance may allow the networks within layer 4 to maintain stable levels of activity in the face of variable sensory input.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous activity of layer 4 star pyramidal neurons was increased after 2 d of visual deprivation.
Figure 2: Visual deprivation did not affect the intrinsic excitability of star pyramidal neurons.
Figure 3: The balance between excitatory and inhibitory synaptic drive was altered by visual deprivation.
Figure 4: Visual deprivation increased the amplitude of monosynaptic connections between star pyramidal neurons.
Figure 5: Visual deprivation decreased the amplitude of monosynaptic connections between fast-spiking and star pyramidal neurons.
Figure 6: Visual deprivation increased the amplitude of monosynaptic connections between RSNP and star pyramidal neurons but decreased the connection probability.

Similar content being viewed by others

References

  1. Hubel, D.H. & Wiesel, T.N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  2. Shatz, C.J. & Stryker, M.P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. (Lond.) 281, 267–283 (1978).

    Article  CAS  Google Scholar 

  3. Shatz, C.J. Impulse activity and the patterning of connections during CNS development. Neuron 5, 745–756 (1990).

    Article  CAS  Google Scholar 

  4. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  5. Benevento, L.A., Bakkum, B.W., Port, J.D. & Cohen, R.S. The effects of dark-rearing on the electrophysiology of the rat visual cortex. Brain Res. 572, 198–207 (1992).

    Article  CAS  Google Scholar 

  6. Heynen, A.J. et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat. Neurosci. 6, 854–862 (2003).

    Article  CAS  Google Scholar 

  7. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 34, 709–720 (1994).

    Article  CAS  Google Scholar 

  8. White, L.E., Coppola, D.M. & Fitzpatrick, D. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411, 1049–1052 (2001).

    Article  CAS  Google Scholar 

  9. Taha, S. & Stryker, M.P. Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis. Neuron 34, 425–436 (2002).

    Article  CAS  Google Scholar 

  10. Trachtenberg, J.T., Trepel, C. & Stryker, M.P. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex. Science 287, 2029–2032 (2000).

    Article  CAS  Google Scholar 

  11. van Sluyters, R.C. Reversal of the physiological effects of brief periods of monocular deprivation in the kitten. J. Physiol. (Lond.) 284, 1–17 (1978).

    Article  CAS  Google Scholar 

  12. Maurer, D., Lewis, T.L., Brent, H.P. & Levin, A.V. Rapid improvement in the acuity of infants after visual input. Science 286, 108–110 (1999).

    Article  CAS  Google Scholar 

  13. Peters, A. & Kara, D.A. The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells. J. Comp. Neurol. 234, 218–241 (1985).

    Article  CAS  Google Scholar 

  14. Martin, K.A. Microcircuits in visual cortex. Curr. Opin. Neurobiol. 12, 418–425 (2002).

    Article  CAS  Google Scholar 

  15. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  Google Scholar 

  16. Peters, A. & Kara, D.A. The neuronal composition of area 17 of rat visual cortex. II. The nonpyramidal cells. J. Comp. Neurol. 234, 242–263 (1985).

    Article  CAS  Google Scholar 

  17. Desai, N.S., Cudmore, R.H., Nelson, S.B. & Turrigiano, G.G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 5, 783–789 (2002).

    Article  CAS  Google Scholar 

  18. Hendry, S.H. & Jones, E.G. Reduction in number of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17. Nature 320, 750–753 (1986).

    Article  CAS  Google Scholar 

  19. Benevento, L.A., Bakkum, B.W. & Cohen, R.S. γ-Aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats. Brain Res. 689, 172–182 (1995).

    Article  CAS  Google Scholar 

  20. Reid, S.N. & Juraska, J.M. The cytoarchitectonic boundaries of the monocular and binocular areas of the rat primary visual cortex. Brain Res. 563, 293–296 (1991).

    Article  CAS  Google Scholar 

  21. Zilles, K., Wree, A., Schleicher, A. & Divac, I. The monocular and binocular subfields of the rat's primary visual cortex: a quantitative morphological approach. J. Comp. Neurol. 226, 391–402 (1984).

    Article  CAS  Google Scholar 

  22. Caleo, M., Lodovichi, C., Pizzorusso, T. & Maffei, L. Expression of the transcription factor Zif268 in the visual cortex of monocularly deprived rats: effects of nerve growth factor. Neuroscience 91, 1017–1026 (1999).

    Article  CAS  Google Scholar 

  23. Worley, P.F. et al. Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc. Natl Acad. Sci. USA 88, 5106–5110 (1991).

    Article  CAS  Google Scholar 

  24. Chutkow, J. Metabolism of magnesium in central nervous system. Relationship between concentrations of magnesium in cerebrospinal fluid and brain in magnesium deficiency. Neurology 24, 780–787 (1974).

    Article  CAS  Google Scholar 

  25. Zhang, E.T., Hansen, A.J., Wieloch, T. & Lewitzen, M. Influence of MK-801 on brain extracellular calcium and potassium activities in severe hypoglicemia. J. Cereb. Blood Flow Metab. 10, 136–139 (1990).

    Article  CAS  Google Scholar 

  26. Sanchez-Vives, M.V. & McCormick, D. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).

    Article  CAS  Google Scholar 

  27. Desai, N.S., Rutherford, L.C. & Turrigiano, G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999).

    Article  CAS  Google Scholar 

  28. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  29. Kilman, V., van Rossum, M.C. & Turrigiano, G.G. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J. Neurosci. 22, 1328–1337 (2002).

    Article  CAS  Google Scholar 

  30. Finnerty, G.T. & Connors, B.W. Sensory deprivation without competition yields modest alterations of short-term synaptic dynamics. Proc. Natl Acad. Sci. USA 97, 12864–12868 (2000).

    Article  CAS  Google Scholar 

  31. Finnerty, G.T., Roberts, L.S. & Connors, B.W. Sensory experience modifies the short-term dynamics of neocortical synapses. Nature 400, 367–371 (1999).

    Article  CAS  Google Scholar 

  32. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  33. DeFelipe, J. Cortical interneurons: from Cajal to 2001. Prog. Brain Res. 136, 215–238 (2002).

    Article  Google Scholar 

  34. Rutherford, L.C., DeWan, A., Lauer, H.M. & Turrigiano, G.G. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J. Neurosci. 17, 4527–4535 (1997).

    Article  CAS  Google Scholar 

  35. Morales, B., Choi, S.Y. & Kirkwood, A. Dark rearing alters the development of GABAergic transmission in visual cortex. J. Neurosci. 22, 8084–8090 (2002).

    Article  CAS  Google Scholar 

  36. Shao, Z. & Burkhalter, A. Different balance of excitation and inhibition in feed-forward and feedback circuits of rat visual cortex. J. Neurosci. 16, 7353–7365 (1996).

    Article  CAS  Google Scholar 

  37. Hajos, F., Staiger, J.F., Halasy, K., Freund, T.F. & Zilles, K. Geniculo-cortical afferents form synaptic contacts with vasoactive intestinal polypeptide (VIP) immunoreactive neurons of the rat visual cortex. Neurosci. Lett. 228, 179–182 (1997).

    Article  CAS  Google Scholar 

  38. Miller, K.D. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374 (1996).

    Article  CAS  Google Scholar 

  39. Abbott, L.F. & Nelson, S.B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).

    Article  CAS  Google Scholar 

  40. Turrigiano, G.G. & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  41. Hendry, S.H., Fuchs, J., deBlas, A.L. & Jones, E.G. Distribution and plasticity of immunocytochemically localized GABAA receptors in adult monkey visual cortex. J. Neurosci. 10, 2438–2450 (1990).

    Article  CAS  Google Scholar 

  42. Meineke, D.L. & Peters, A. GABA immunoreactive neurons in rat visual cortex. J. Comp. Neurol. 261, 388–404 (1987).

    Article  Google Scholar 

  43. Kirkwood, A. & Bear, M.F. Hebbian synapses in visual cortex. J. Neurosci. 14, 1634–1645 (1994).

    Article  CAS  Google Scholar 

  44. Hensch, T.K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  Google Scholar 

  45. Huang, Z.J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  Google Scholar 

  46. Chagnac-Amitai, Y. & Connors, B.W. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J. Neurophysiol. 61, 747–758 (1989).

    Article  CAS  Google Scholar 

  47. Sjostrom, P.J., Turrigiano, G.G. & Nelson, S.B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164 (2001).

    Article  CAS  Google Scholar 

  48. Deuchars, J. & Thomson, A.M. Single axon fast inhibitory postsynaptic potentials elicited by a sparsely spiny interneuron in rat neocortex. Neuroscience 65, 935–942 (1995).

    Article  CAS  Google Scholar 

  49. Peters, A. & Herrimann, K.M. Enigmatic bipolar cell of rat visual cortex. J. Comp. Neurol. 267, 409–432 (1988).

    Article  CAS  Google Scholar 

  50. Beierlein, M., Gibson, J.R. & Connors, B.W. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J. Neurophysiol. 90, 2987–3000 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Cudmore for help with software, J. Barry and K. Essig for histology and S. Fusi and X.-J. Wang for helpful discussions. Supported by the National Eye Institute (EY014439) and the National Institute on Drug Abuse (DA16455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina G Turrigiano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Reconfiguration of layer 4 connectivity by visual deprivation. Diagram illustrates the circuitry in Control (left) and Deprived (right) layer 4. Deprivation increases the amplitude (thick red axons) and connection probability of excitatory synapses between layer 4 star pyramids. In contrast, the amplitude of inhibitory connections from FS interneurons onto star pyramids was reduced in amplitude (dashed green axons). Finally, inhibitory connections from RSNP neurons onto star pyramids increased in amplitude (thick blue axon) but connection probability was cut in half. These changes should act to boost recurrent excitation within layer 4, while reducing feedback inhibition from FS neurons and leaving feed-forward inhibition roughly constant. (PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffei, A., Nelson, S. & Turrigiano, G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat Neurosci 7, 1353–1359 (2004). https://doi.org/10.1038/nn1351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing