Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural population code for fine perceptual decisions in area MT

Abstract

In the middle temporal (MT) area of primates, many motion-sensitive neurons with a wide range of preferred directions respond to a stimulus moving in a single direction. These neurons are involved in direction perception, but it is not clear how perceptual decisions are related to the population response. We recorded the activities of MT neurons in rhesus monkeys while they discriminated closely related directions, and examined the relationship between the activities of neurons tuned to different directions and the monkeys' choices. Perceptual decisions were significantly correlated with the activities of the highest-precision neurons but not with those of the lowest-precision neurons. The combined performance of the high-precision neurons matched the monkeys' behavior, whereas the ability to predict behavior based on the entire active population was poor. These results suggest that fine discrimination decisions are crucially dependent on the activities of the most informative neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fine direction-discrimination task and the monkeys' psychophysical performance.
Figure 2: Neurometric functions.
Figure 3: Relationship between neural precision and preferred direction.
Figure 4: Covariation between neural responses and the monkeys' choices.
Figure 5: Mutual information between neuron's firing rates and the monkeys' decisions.
Figure 6: Fine discrimination performance of various neural coding schemes analyzed using a discrimination model.

References

  1. Barlow, H.B. Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1, 371–394 (1972).

    Article  CAS  Google Scholar 

  2. Albright, T.D., Jessell, T.M., Kandel, E.R. & Posner, M.I. Neural science: a century of progress and the mysteries that remain. Neuron 25, S1–S55 (2000).

    Article  Google Scholar 

  3. deCharms, R.C. & Zador, A. Neural representation and the cortical code. Annu. Rev. Neurosci. 23, 613–647 (2000).

    Article  CAS  Google Scholar 

  4. Erickson, R.P. The evolution and implications of population and modular neural coding ideas. (Chapter 2) in Progress in Brain Research Vol. 130 (ed. Nicolelis, M.A.L.) 9–29 (Elsevier, Amsterdam, 2001).

    Google Scholar 

  5. Young, T. The Bakerian Lecture: on the theory of light and colours. Phil. Trans. R. Soc. Lond. 92, 12–48 (1802).

    Article  Google Scholar 

  6. Barlow, H.B. The neuron doctrine in perception. in The Cognitive Neurosciences (ed. Gazzaniga, M.S.) 415–435 (Cambridge, Massachusetts, 1995).

    Google Scholar 

  7. De Valois, R.L., Abramov, I. & Mead, W.R. Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque. J. Neurophysiol. 30, 415–433 (1967).

    Article  CAS  Google Scholar 

  8. Bradley, A., Skottun, B.C., Ohzawa, I., Sclar, G. & Freeman, R.D. Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. J. Neurophysiol. 57, 755–772 (1987).

    Article  CAS  Google Scholar 

  9. Ohzawa, I., DeAngelis, G.C. & Freeman, R.D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990).

    Article  CAS  Google Scholar 

  10. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  Google Scholar 

  11. Dubner, R. & Zeki, S. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 35, 528–532 (1971).

    Article  CAS  Google Scholar 

  12. Allman, J.M. & Kaas, K.H. A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 31, 85–105 (1971).

    Article  CAS  Google Scholar 

  13. Zeki, S. J. Physiol. (Lond.) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. 236, 549–573 (1974).

    Article  CAS  Google Scholar 

  14. Maunsell, J.H.R. & Van Essen, D.C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49, 1127–1147 (1983).

    Article  CAS  Google Scholar 

  15. Albright, T.D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106–1130 (1984).

    Article  CAS  Google Scholar 

  16. Snowden, R.J., Treue, S. & Andersen, R.A. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Exp. Brain Res. 88, 389–400 (1992).

    Article  CAS  Google Scholar 

  17. Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  18. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  19. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  Google Scholar 

  20. Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, J.A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  Google Scholar 

  21. Treue, S., Hol, K. & Rauber, H.J. Seeing multiple directions of motion-physiology and psychophysics. Nat. Neurosci. 3, 270–276 (2000).

    Article  CAS  Google Scholar 

  22. Sekuler, R., Watamaniuk, S.N.J. & Blake, R. in Steven's Handbook of Experimental Psychology Vol. 1 (eds. Yantis, S. & Pashler, H.) 121–176 (Wiley, New York, 2002).

    Google Scholar 

  23. Watamaniuk, S.N.J., Sekuler, R. & Williams, D.W. Direction perception in complex dynamic displays: the integration of direction information. Vision Res. 29, 47–59 (1989).

    Article  CAS  Google Scholar 

  24. Watamaniuk, S.N.J. & Sekuler, R. Temporal and spatial integration in dynamic random-dot stimuli. Vision Res. 32, 2341–2347 (1992).

    Article  CAS  Google Scholar 

  25. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

    Google Scholar 

  26. Regan, D. & Beverly, K.I. Spatial frequency discrimination and detection: comparision of postadaptation thresholds. J. Opt. Soc. Am. 73, 1684–1690 (1983).

    Article  CAS  Google Scholar 

  27. Regan, D. & Beverly, K.I. Postadaptation orientation discrimination. J. Opt. Soc. Am. A 2, 147–155 (1985).

    Article  CAS  Google Scholar 

  28. Vogels, R. & Orban, G.A. How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey. J. Neurosci. 10, 3543–3558 (1990).

    Article  CAS  Google Scholar 

  29. Wilson, H.R. & Regan, D. Spatial frequency adaptation and grating discrimination: predictions of a line element model. J. Opt. Soc. Am. A 1, 1091–1096 (1984).

    Article  CAS  Google Scholar 

  30. Hol, K. & Treue, S. Different populations of neurons contribute to the detection and discrimination of visual motion. Vision Res. 41, 685–689 (2001).

    Article  CAS  Google Scholar 

  31. Ash, R. Information Theory (Wiley, New York, 1965).

    Google Scholar 

  32. Reza, F. An introduction to information theory (Dover, New York, 1994).

    Google Scholar 

  33. Quick, R.F. A vector-magnitude model of contrast detection. Kybernetik 16, 65–67 (1974).

    Article  Google Scholar 

  34. Seung, H.S. & Sompolinsky, H. Simple models for reading neuronal population codes. Proc. Natl Acad. Sci. USA 90, 10749–10753 (1993).

    Article  CAS  Google Scholar 

  35. Osborne, L.C., Bialek, W. & Lisberger, S.G. Time course of information about motion direction in visual area MT of macaque monkeys. J. Neurosci. 24, 3210–3222 (2004).

    Article  CAS  Google Scholar 

  36. Mazurek, M.E., Roitman, J.D., Ditterich, J. & Shadlen, M.N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269 (2003).

    Article  Google Scholar 

  37. Cook, E.P. & Maunsell, J.H.R. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat. Neurosci. 5, 985–994 (2002).

    Article  CAS  Google Scholar 

  38. Gilbert, C.D., Sigman, M. & Crist, R.E. The neural basis of perceptual learning. Neuron 31, 681–697 (2001).

    Article  CAS  Google Scholar 

  39. Poggio, T. & Shelton, C.R. Learning in brains and machines. Spat. Vis. 13, 287–296 (2000).

    Article  CAS  Google Scholar 

  40. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  Google Scholar 

  41. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  Google Scholar 

  42. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  43. Liu, J. & Newsome, W.T. Functional organization of speed tuned neurons in visual area MT. J. Neurophysiol. 89, 246–256 (2003).

    Article  Google Scholar 

  44. Pelli, D.G. Uncertainty explains many aspects of visual contrast detection and discrimination. J. Opt. Soc. Am. A 2, 1508–1532 (1985).

    Article  CAS  Google Scholar 

  45. Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by US National Institutes of Health grant R01 EY013138. We thank H. Bedell, R. Born, W. Bosking, K. Britten, G. DeAngelis, M. Fukushima, W. Newsome, H. Ogmen, S. Patel, B. Scott, M. Shadlen, P. Wallisch and S. Watamaniuk for suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C Bradley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Neural precision is plotted as a function of the slope of the direction-tuning curve near the stimuli directions. (GIF 9 kb)

Supplementary Fig. 2

Psychometric function for reference stimulus directions of 85° and 95°, pooled from data over several recording sessions. If the monkey had ignored the reference, then the responses would have been at the 100% for all direction differences about 85° reference and at 0% for all direction differences about the 95° reference, resulting in a flat line near the 50% level. (GIF 16 kb)

Supplementary Fig. 3

Threshold ratio of neuron to behaviour calculated using the firing rates from the test interval (for the trials in which the test direction = reference direction) as the reference histogram. These ratios are not statistically different from those in Fig. 3a (t-test, p>0.8). (GIF 15 kb)

Supplementary Fig. 4

Thresholds are shown as a function of integration time. The top figure shows the psychophysical data and the bottom, the neural data. (GIF 9 kb)

Supplementary Fig. 5

Psychophysical and neurometric functions for three neurons are shown comparatively for two ranges of direction-differences. The left row shows psychometric and neurometric functions for the smaller range of direction differences and the right row for the larger range. Each row of data is for one neuron. “N Thresh” is the neurometric threshold and “P Thresh” is the psychophysical threshold. (GIF 20 kb)

Supplementary Fig. 6

Psychophysical thresholds are compared for the two ranges of direction-differences. (GIF 9 kb)

Supplementary Fig. 7

Ratio of the neurometric threshold estimated with the wider range of direction differences (−16°,+16°) to that estimated with the shorter range (−3°,+3°) is shown for 132 neurons. (GIF 13 kb)

Supplementary Notes (PDF 154 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purushothaman, G., Bradley, D. Neural population code for fine perceptual decisions in area MT. Nat Neurosci 8, 99–106 (2005). https://doi.org/10.1038/nn1373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing