Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Central amygdala ERK signaling pathway is critical to incubation of cocaine craving

Abstract

Using a rat model of craving and relapse, we have previously found time-dependent increases in cue-induced cocaine seeking over the first months of withdrawal from cocaine, suggesting that drug craving incubates over time. Here, we explored the role of the amygdala extracellular signal–regulated kinase (ERK) signaling pathway in this incubation. Cocaine seeking induced by exposure to cocaine cues was substantially higher after 30 withdrawal days than after 1 withdrawal day. Exposure to these cues increased ERK phosphorylation in the central, but not the basolateral, amygdala after 30 d, but not 1 d, of withdrawal. After 30 d of withdrawal from cocaine, inhibition of central, but not basolateral, amygdala ERK phosphorylation decreased cocaine seeking. After 1 d of withdrawal, stimulation of central amygdala ERK phosphorylation increased cocaine seeking. Results suggest that the incubation of cocaine craving is mediated by time-dependent increases in the responsiveness of the central amygdala ERK pathway to cocaine cues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-dependent increases in cocaine seeking after withdrawal.
Figure 2: Exposure to cocaine cues after 30 d of withdrawal increases ERK phosphorylation in the central amygdala.
Figure 3: Exposure to cocaine cues after 30 d of withdrawal increases ERK phosphorylation in the central amygdala: a replication using rats chronically housed in the cocaine self-administration environment during the withdrawal period.
Figure 4: Inhibition of ERK phosphorylation in the central amygdala decreases cocaine seeking after 30 d of withdrawal.
Figure 6: Induction of ERK phosphorylation in the central amygdala by NMDA increases cocaine seeking after 1 d of withdrawal.
Figure 5: Blockade of NMDA receptors in the central amygdala decreases cocaine seeking and ERK phosphorylation after 30 d of withdrawal.
Figure 7: Inhibition of ERK activity in the central amygdala has no effect on lever responding reinforced by cocaine or palatable food.

Similar content being viewed by others

References

  1. O'Brien, C.P. A range of research-based pharmacotherapies for addiction. Science 278, 66–70 (1997).

    Article  CAS  Google Scholar 

  2. Gawin, F.H. & Kleber, H.D. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch. Gen. Psychiatry 43, 107–113 (1986).

    Article  CAS  Google Scholar 

  3. Grimm, J.W., Hope, B.T., Wise, R.A. & Shaham, Y. Incubation of cocaine craving after withdrawal. Nature 412, 141–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lu, L., Grimm, J.W., Dempsey, J. & Shaham, Y. Cocaine seeking over extended withdrawal periods in rats: different time courses of responding induced by cocaine cues versus cocaine priming over the first 6 months. Psychopharmacology (Berl.) 176, 101–108 (2004).

    Article  CAS  Google Scholar 

  5. Neisewander, J.L. et al. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J. Neurosci. 20, 798–805 (2000).

    Article  CAS  Google Scholar 

  6. Nestler, E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128 (2001).

    Article  CAS  Google Scholar 

  7. Kalivas, P.W. Glutamate systems in cocaine addiction. Curr. Opin. Pharmacol. 4, 23–29 (2004).

    Article  CAS  Google Scholar 

  8. Stewart, J. Pathways to relapse: factors controlling the reinitiation of drug seeking after abstinence. Nebr. Symp. Motiv. 50, 197–234 (2004).

    Google Scholar 

  9. Everitt, B.J. & Wolf, M.E. Psychomotor stimulant addiction: a neural systems perspective. J. Neurosci. 22, 3312–3320 (2002).

    Article  CAS  Google Scholar 

  10. Grimm, J.W. et al. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci. 23, 742–747 (2003).

    Article  CAS  Google Scholar 

  11. Lu, L., Grimm, J.W., Shaham, Y. & Hope, B.T. Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats. J. Neurochem. 85, 1604–1613 (2003).

    Article  CAS  Google Scholar 

  12. Lu, L., Dempsey, J., Liu, S.Y., Bossert, J.M. & Shaham, Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J. Neurosci. 24, 1604–1611 (2004).

    Article  CAS  Google Scholar 

  13. Lu, L., Grimm, J.W., Hope, B.T. & Shaham, Y. Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47 (Suppl. 1), 214–226 (2004).

    Article  CAS  Google Scholar 

  14. Berhow, M.T., Hiroi, N. & Nestler, E.J. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J. Neurosci. 16, 4707–4715 (1996).

    Article  CAS  Google Scholar 

  15. Valjent, E. et al. Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J. Neurosci. 20, 8701–8709 (2000).

    Article  CAS  Google Scholar 

  16. Licata, S.C. & Pierce, R.C. The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitization. J. Neurochem. 85, 14–22 (2003).

    Article  CAS  Google Scholar 

  17. Thomas, G.M. & Huganir, R.L. MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173–183 (2004).

    Article  CAS  Google Scholar 

  18. Adams, J.P. & Sweatt, J.D. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163 (2002).

    Article  CAS  Google Scholar 

  19. Schafe, G.E. et al. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J. Neurosci. 20, 8177–8187 (2000).

    Article  CAS  Google Scholar 

  20. Lu, K.T., Walker, D.L. & Davis, M. Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J. Neurosci. 21, RC162 (2001).

    Article  CAS  Google Scholar 

  21. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  Google Scholar 

  22. Gallagher, M. & Chiba, A.A. The amygdala and emotion. Curr. Opin. Neurobiol. 6, 221–227 (1996).

    Article  CAS  Google Scholar 

  23. Everitt, B.J. et al. Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann. NY Acad. Sci. 877, 412–438 (1999).

    Article  CAS  Google Scholar 

  24. See, R.E. Neural substrates of conditioned-cued relapse to drug-seeking behavior. Pharmacol. Biochem. Behav. 71, 517–529 (2002).

    Article  CAS  Google Scholar 

  25. Shaham, Y., Shalev, U., Lu, L., De Wit, H. & Stewart, J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl.) 168, 3–20 (2003).

    Article  CAS  Google Scholar 

  26. Shalev, U., Grimm, J.W. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol. Rev. 54, 1–42 (2002).

    Article  CAS  Google Scholar 

  27. Balleine, B.W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).

    Article  CAS  Google Scholar 

  28. Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Fiore, R.S., Murphy, T.H., Sanghera, J.S., Pelech, S.L. & Baraban, J.M. Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. J. Neurochem. 61, 1626–1633 (1993).

    Article  CAS  Google Scholar 

  30. Jentsch, J.D. & Taylor, J.R. Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharamacology 146, 373–390 (1999).

    Article  CAS  Google Scholar 

  31. Burns, L.H., Robbins, T.W. & Everitt, B.J. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Behav. Brain Res. 55, 167–183 (1993).

    Article  CAS  Google Scholar 

  32. Robledo, P., Robbins, T.W. & Everitt, B.J. Effects of excitotoxic lesions of the central amygdaloid nucleus on the potentiation of reward-related stimuli by intra-accumbens amphetamine. Behav. Neurosci. 110, 981–990 (1996).

    Article  CAS  Google Scholar 

  33. Wolf, M.E., Sun, X., Mangiavacchi, S. & Chao, S.Z. Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47 (Suppl. 1), 61–79 (2004).

    Article  CAS  Google Scholar 

  34. Holland, P.C. & Gallagher, M. Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus-potentiated feeding and Pavlovian-instrumental transfer. Eur. J. Neurosci. 17, 1680–1694 (2003).

    Article  Google Scholar 

  35. Ungless, M.A., Whistler, J.L., Malenka, R.C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587 (2001).

    Article  CAS  Google Scholar 

  36. Thomas, M.J., Beurrier, C., Bonci, A. & Malenka, R.C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat. Neurosci. 4, 1217–1223 (2001).

    Article  CAS  Google Scholar 

  37. Baker, D.A. et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat. Neurosci. 6, 743–749 (2003).

    Article  CAS  Google Scholar 

  38. Wise, R.A. & Hoffman, D.C. Localization of drug reward mechanisms by intracranial injections. Synapse 10, 247–263 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Overton, D.A. Experimental methods for the study of state-dependent learning. Fed. Proc. 33, 1800–1813 (1974).

    CAS  Google Scholar 

  40. Whitelaw, R.B., Markou, A., Robbins, T.W. & Everitt, B.J. Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology (Berl.) 127, 213–224 (1996).

    Article  CAS  Google Scholar 

  41. Davis, M., Walker, D.L. & Myers, K.M. Role of the amygdala in fear extinction measured with potentiated startle. Ann. NY Acad. Sci. 985, 218–232 (2003).

    Article  CAS  Google Scholar 

  42. Berman, D.E. & Dudai, Y. Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science 291, 2417–2419 (2001).

    Article  CAS  Google Scholar 

  43. Nestler, E.J. Common molecular and cellular substrates of addiction and memory. Neurobiol. Learn. Mem. 78, 637–647 (2002).

    Article  CAS  Google Scholar 

  44. Robinson, T.E. & Berridge, K.C. Addiction. Annu. Rev. Psychol. 54, 25–53 (2003).

    Article  Google Scholar 

  45. Sweatt, J.D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 76, 1–10 (2001).

    Article  CAS  Google Scholar 

  46. Grant, S. et al. Activation of memory circuits during cue-elicited cocaine craving. Proc. Natl. Acad. Sci. USA 93, 12040–12045 (1996).

    Article  CAS  Google Scholar 

  47. Eysenck, H.J. A theory of the incubation of anxiety-fear responses. Behav. Res. Ther. 6, 309–321 (1968).

    Article  CAS  Google Scholar 

  48. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, San Diego, 1998).

    Google Scholar 

  49. Hayes, R.J., Vorel, S.R., Spector, J., Liu, X. & Gardner, E.L. Electrical and chemical stimulation of the basolateral complex of the amygdala reinstates cocaine-seeking behavior in the rat. Psychopharmacology (Berl.) 168, 75–83 (2003).

    Article  CAS  Google Scholar 

  50. Kelleher, R.J. III, Govindarajan, A., Jung, H.Y., Kang, H. & Tonegawa, S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gray, D. Nagarkar, D. Chuang and C. Scheidweiler for technical assistance, and J. Stewart, D.E. Epstein, B.J. Everitt and R.A. Wise for helpful comments and critical discussions of the present data. Research was supported by the National Institute on Drug Abuse Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavin Shaham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Hope, B., Dempsey, J. et al. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat Neurosci 8, 212–219 (2005). https://doi.org/10.1038/nn1383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing