Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiple periods of functional ocular dominance plasticity in mouse visual cortex

Abstract

The precise period when experience shapes neural circuits in the mouse visual system is unknown. We used Arc induction to monitor the functional pattern of ipsilateral eye representation in cortex during normal development and after visual deprivation. After monocular deprivation during the critical period, Arc induction reflects ocular dominance (OD) shifts within the binocular zone. Arc induction also reports faithfully expected OD shifts in cat. Shifts towards the open eye and weakening of the deprived eye were seen in layer 4 after the critical period ends and also before it begins. These shifts include an unexpected spatial expansion of Arc induction into the monocular zone. However, this plasticity is not present in adult layer 6. Thus, functionally assessed OD can be altered in cortex by ocular imbalances substantially earlier and far later than expected.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pattern of Arc induction reliably reflects the pathways activated by visual stimulation.
Figure 2: Developmental restriction of ipsilateral eye representation in visual cortex between P17 and P25.
Figure 3: Arc induction shows OD plasticity induced by ME or MD during the known 'critical period'.
Figure 4: Visual experience alters initial formation and subsequent maintenance of ipsilateral eye representation within visual cortex.
Figure 5: Arc induction shows OD plasticity earlier and beyond the known 'critical period'.

Similar content being viewed by others

References

  1. Katz, L.C. & Crowley, J.C. Development of cortical circuits: lessons from ocular dominance columns. Nat. Rev. Neurosci. 3, 34–42 (2002).

    Article  CAS  Google Scholar 

  2. Feller, E. & Feldman, D.E. Synaptic basis for developmental plasticity in somatosensory cortex. Curr. Opin. Neurobiol. 14, 89–95 (2004).

    Article  Google Scholar 

  3. Hubel, D.H., Wiesel, T.N. & LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 278, 377–409 (1977).

    Article  CAS  Google Scholar 

  4. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  5. Crair, M.C. Neuronal activity during development: permissive or instructive? Curr. Opin. Neurobiol. 9, 88–93 (1999).

    Article  CAS  Google Scholar 

  6. Hensch, T.K. Controlling the critical period. Neurosci. Res. 47, 17–22 (2003).

    Article  Google Scholar 

  7. Gordon, J.A., Cioffi, D., Silva, A.J. & Stryker, M.P. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice. Neuron 17, 491–499 (1996).

    Article  CAS  Google Scholar 

  8. Hensch, T.K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  Google Scholar 

  9. Sawtell, N.B. et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron. 38, 977–985 (2003).

    Article  CAS  Google Scholar 

  10. Drager, U.C. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160, 269–290 (1975).

    Article  CAS  Google Scholar 

  11. Caviness, V.S., Jr. Architectonic map of neocortex of the normal mouse. J. Comp. Neurol. 164, 247–263 (1975).

    Article  Google Scholar 

  12. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res. 34, 709–720 (1994).

    Article  CAS  Google Scholar 

  13. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  14. Antonini, A., Fagiolini, M. & Stryker, M.P. Anatomical correlates of functional plasticity in mouse visual cortex. J. Neurosci. 19, 4388–4406 (1999).

    Article  CAS  Google Scholar 

  15. Antonini, A. & Stryker, M.P. Rapid remodeling of axonal arbors in the visual cortex. Science 260, 1819–1821 (1993).

    Article  CAS  Google Scholar 

  16. Lyford, G.L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    Article  CAS  Google Scholar 

  17. Morgan, J.I. & Curran, T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu. Rev. Neurosci. 14, 421–451 (1991).

    Article  CAS  Google Scholar 

  18. Kaczmarek, L. & Chaudhuri, A. Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res. Brain Res. Rev. 23, 237–256 (1997).

    Article  CAS  Google Scholar 

  19. Guzowski, J.F., McNaughton, B.L., Barnes, C.A. & Worley, P.F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124 (1999).

    Article  CAS  Google Scholar 

  20. Schuett, S., Bonhoeffer, T. & Hubener, M. Mapping retinotopic structure in mouse visual cortex with optical imaging. J. Neurosci. 22, 6549–6559 (2002).

    Article  CAS  Google Scholar 

  21. Kalatsky, V.A. & Stryker, M.P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

    Article  CAS  Google Scholar 

  22. Hubener, M. Mouse visual cortex. Curr. Opin. Neurobiol. 13, 413–420 (2003).

    Article  CAS  Google Scholar 

  23. Schaeren-Wiemers, N., Andre, E., Kapfhammer, J.P. & Becker-Andre, M. The expression pattern of the orphan nuclear receptor RORβ in the developing and adult rat nervous system suggests a role in the processing of sensory information and in circadian rhythm. Eur. J. Neurosci. 9, 2687–2701 (1997).

    Article  CAS  Google Scholar 

  24. Weimann, J.M. et al. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24, 819–831 (1999).

    Article  CAS  Google Scholar 

  25. Liu, X.B. & Jones, E.G. Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 7332–7336 (1996).

    Article  CAS  Google Scholar 

  26. LeVay, S., Stryker, M.P. & Shatz, C.J. Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol. 179, 223–244 (1978).

    Article  CAS  Google Scholar 

  27. Drager, U.C. Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res. 82, 284–292 (1974).

    Article  CAS  Google Scholar 

  28. Lein, E.S. & Shatz, C.J. Rapid regulation of brain-derived neurotrophic factor mRNA within eye-specific circuits during ocular dominance column formation. J. Neurosci. 20, 1470–1483 (2000).

    Article  CAS  Google Scholar 

  29. Shatz, C.J. & Stryker, M.P. Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. J. Physiol. (Lond.) 281, 267–283 (1978).

    Article  CAS  Google Scholar 

  30. LeVay, S., Wiesel, T.N. & Hubel, D.H. The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 191, 1–51 (1980).

    Article  CAS  Google Scholar 

  31. Crair, M.C., Horton, J.C., Antonini, A. & Stryker, M.P. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J. Comp. Neurol. 430, 235–249 (2001).

    Article  CAS  Google Scholar 

  32. Kageyama, G.H. & Robertson, R.T. Development of geniculocortical projections to visual cortex in rat: evidence early ingrowth and synaptogenesis. J. Comp. Neurol. 335, 123–148 (1993).

    Article  CAS  Google Scholar 

  33. Godement, P., Salaun, J. & Imbert, M. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230, 552–575 (1984).

    Article  CAS  Google Scholar 

  34. Muir-Robinson, G., Hwang, B.J. & Feller, M.B. Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci. 22, 5259–5264 (2002).

    Article  CAS  Google Scholar 

  35. Pham, T.A., Rubenstein, J.L., Silva, A.J., Storm, D.R. & Stryker, M.P. The CRE/CREB pathway is transiently expressed in thalamic circuit development and contributes to refinement of retinogeniculate axons. Neuron 31, 409–420 (2001).

    Article  CAS  Google Scholar 

  36. Drager, U.C. Observations on monocular deprivation in mice. J. Neurophysiol. 41, 28–42 (1978).

    Article  CAS  Google Scholar 

  37. Porciatti, V., Pizzorusso, T. & Maffei, L. The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res. 39, 3071–3081 (1999).

    Article  CAS  Google Scholar 

  38. Pizzorusso, T. et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248–1251 (2002).

    Article  CAS  Google Scholar 

  39. Hubel, D.H. & Wiesel, T.N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  40. Pham, T.A. et al. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB. Learn. Mem. 11, 1–10 (2004).

    Article  Google Scholar 

  41. Desai, N.S., Cudmore, R.H., Nelson, S.B. & Turrigiano, G.G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 5, 783–789 (2002).

    Article  CAS  Google Scholar 

  42. Turrigiano, G.G & Nelson, S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107 (2004).

    Article  CAS  Google Scholar 

  43. Kaneko, S. et al. Synaptic integration mediated by striatial cholinergic interneurons in basal ganglia function. Science 289, 633–637 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Marcotrigiano, B. Printseva and Y. Kim for technical assistance, P. Worley and S. Nakanishi for providing plasmids (Arc, CaMKIIα, GAD67) and Shatz lab members for helpful discussions. This work was supported by US National Institute of Health grants to C.J.S. (NEI R01, EY02858) and P.O.K. (F32 EY1352), an Uehara Memorial Foundation fellowship to Y.T. and a Canadian Institute for Health Research fellowship to M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla J Shatz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Extent of retrograde labeling within LGN following injection of similar volumes of Red Retrobeads into the BZ of mouse visual cortex at two different ages. (PDF 28781 kb)

Supplementary Methods (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagawa, Y., Kanold, P., Majdan, M. et al. Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat Neurosci 8, 380–388 (2005). https://doi.org/10.1038/nn1410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing