Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor

Abstract

Axon growth is governed by the ability of growth cones to interpret attractive and repulsive guidance cues. Recent studies have shown that secreted signaling molecules known as morphogens can also act as axon guidance cues. Of the large family of Wnt signaling components, only Wnt4 and Wnt5 seem to participate directly in axon guidance. Here we show that secreted Frizzled-related protein 1 (SFRP1), a proposed Wnt signaling inhibitor, can directly modify and reorient the growth of chick and Xenopus laevis retinal ganglion cell axons. This activity does not require Wnt inhibition and is modulated by extracellular matrix molecules. Intracellularly, SFRP1 function requires Gα protein activation, protein synthesis and degradation, and it is modulated by cyclic nucleotide levels. Because SFRP1 interacts with Frizzled-2 (Fz2) and interference with Fz2 expression abolishes growth cone responses to SFRP1, we propose a previously unknown function for this molecule: the ability to guide growth cone movement via the Fz2 receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SFRP1 promotes neurite outgrowth in a dose-dependent manner.
Figure 2: Sfrp1 transcripts are distributed in critical regions of the developing chick visual pathway.
Figure 3: SFRP1 induces turning behavior in X. laevis growth cones, which is modulated by ECM.
Figure 4: Chick RGC axons respond to SFRP1 and to its CRD domain in stripe assays.
Figure 5: Exposure to SFRP1 interferes with the normal development of the optic tract.
Figure 6: RGC growth cone response to SFRP1 depends on the intracellular concentration of cAMP and cGMP and requires protein synthesis and proteasomal degradation.
Figure 7: SFRP1 binds to Fz2, and interference with Fz2 expression abolishes growth cone response to SFRP1.

Similar content being viewed by others

References

  1. Ciani, L. & Salinas, P.C. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat. Rev. Neurosci. 6, 351–362 (2005).

    Article  CAS  Google Scholar 

  2. Wang, H.Y. & Malbon, C.C. Wnt-frizzled signaling to G-protein-coupled effectors. Cell. Mol. Life Sci. 61, 69–75 (2004).

    Article  CAS  Google Scholar 

  3. Packard, M. et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111, 319–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez-Camacho, C., Rodriguez, J., Ruiz, J., Trousse, F. & Bovolenta, P. Morphogens as growth cone signalling molecules. Brain Res. Brain Res. Rev. 49, 242–252 (2005).

    Article  CAS  Google Scholar 

  5. Yoshikawa, S., McKinnon, R.D., Kokel, M. & Thomas, J.B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Lyuksyutova, A.I. et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302, 1984–1988 (2003).

    Article  CAS  Google Scholar 

  7. Wang, Y., Thekdi, N., Smallwood, P.M., Macke, J.P. & Nathans, J. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J. Neurosci. 22, 8563–8573 (2002).

    Article  CAS  Google Scholar 

  8. Lu, W., Yamamoto, V., Ortega, B. & Baltimore, D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108 (2004).

    Article  CAS  Google Scholar 

  9. Kawano, Y. & Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634 (2003).

    Article  CAS  Google Scholar 

  10. Collavin, L. & Kirschner, M.W. The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm. Development 130, 805–816 (2003).

    Article  CAS  Google Scholar 

  11. Esteve, P., Trousse, F., Rodriguez, J. & Bovolenta, P. SFRP1 modulates retina cell differentiation through a beta-catenin-independent mechanism. J. Cell Sci. 116, 2471–2481 (2003).

    Article  CAS  Google Scholar 

  12. Yabe, T. et al. Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development 130, 2705–2716 (2003).

    Article  CAS  Google Scholar 

  13. Lee, J.L., Lin, C.T., Chueh, L.L. & Chang, C.J. Autocrine/paracrine secreted Frizzled-related protein 2 induces cellular resistance to apoptosis: a possible mechanism of mammary tumorigenesis. J. Biol. Chem. 279, 14602–14609 (2004).

    Article  CAS  Google Scholar 

  14. Esteve, P., Lopez-Rios, J. & Bovolenta, P. SFRP1 is required for the proper establishment of the eye field in the medaka fish. Mech. Dev. 121, 687–701 (2004).

    Article  CAS  Google Scholar 

  15. Esteve, P., Morcillo, J. & Bovolenta, P. Early and dynamic expression of cSfrp1 during chick embryo development. Mech. Dev. 97, 217–221 (2000).

    Article  CAS  Google Scholar 

  16. Xu, Q., D'Amore, P.A. & Sokol, S.Y. Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist. Development 125, 4767–4776 (1998).

    CAS  Google Scholar 

  17. Lohof, A.M., Quillan, M., Dan, Y. & Poo, M.M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261 (1992).

    Article  CAS  Google Scholar 

  18. Hopker, V.H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  CAS  Google Scholar 

  19. Weinl, C., Drescher, U., Lang, S., Bonhoeffer, F. & Loschinger, J. On the turning of Xenopus retinal axons induced by ephrin-A5. Development 130, 1635–1643 (2003).

    Article  CAS  Google Scholar 

  20. Hornberger, M.R. et al. Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731–742 (1999).

    Article  CAS  Google Scholar 

  21. Irie, A., Yates, E.A., Turnbull, J.E. & Holt, C.E. Specific heparan sulfate structures involved in retinal axon targeting. Development 129, 61–70 (2002).

    CAS  Google Scholar 

  22. Song, H. & Poo, M. The cell biology of neuronal navigation. Nat. Cell Biol. 3, E81–E88 (2001).

    Article  CAS  Google Scholar 

  23. Nishiyama, M. et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423, 990–995 (2003).

    Article  CAS  Google Scholar 

  24. Campbell, D.S. & Holt, C.E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  Google Scholar 

  25. Chong, J.M., Uren, A., Rubin, J.S. & Speicher, D.W. Disulfide bond assignments of secreted Frizzled-related protein-1 provide insights about Frizzled homology and netrin modules. J. Biol. Chem. 277, 5134–5144 (2002).

    Article  CAS  Google Scholar 

  26. Banyai, L. & Patthy, L. The NTR module: domains of netrins, secreted frizzled related proteins, and type I procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases. Protein Sci. 8, 1636–1642 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Lim, Y.S. & Wadsworth, W.G. Identification of domains of netrin UNC-6 that mediate attractive and repulsive guidance and responses from cells and growth cones. J. Neurosci. 22, 7080–7087 (2002).

    Article  CAS  Google Scholar 

  28. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  Google Scholar 

  29. Uren, A. et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J. Biol. Chem. 275, 4374–4382 (2000).

    Article  CAS  Google Scholar 

  30. Bafico, A. et al. Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J. Biol. Chem. 274, 16180–16187 (1999).

    Article  CAS  Google Scholar 

  31. Dann, C.E. et al. Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412, 86–90 (2001).

    Article  CAS  Google Scholar 

  32. Kuhl, M. The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front. Biosci. 9, 967–974 (2004).

    Article  Google Scholar 

  33. Chapman, S.C., Brown, R., Lees, L., Schoenwolf, G.C. & Lumsden, A. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev. Dyn. 229, 668–676 (2004).

    Article  CAS  Google Scholar 

  34. Xiang, Y. et al. Nerve growth cone guidance mediated by G protein-coupled receptors. Nat. Neurosci. 5, 843–848 (2002).

    Article  CAS  Google Scholar 

  35. van Horck, F.P., Weinl, C. & Holt, C.E. Retinal axon guidance: novel mechanisms for steering. Curr. Opin. Neurobiol. 14, 61–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. McLaughlin, T., Hindges, R. & O'Leary, D.D. Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr. Opin. Neurobiol. 13, 57–69 (2003).

    Article  CAS  Google Scholar 

  37. Morissette, N. & Carbonetto, S. Laminin alpha 2 chain (M chain) is found within the pathway of avian and murine retinal projections. J. Neurosci. 15, 8067–8082 (1995).

    Article  CAS  Google Scholar 

  38. Deiner, M.S. et al. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Neuron 19, 575–589 (1997).

    Article  CAS  Google Scholar 

  39. Deiner, M.S. & Sretavan, D.W. Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice. J. Neurosci. 19, 9900–9912 (1999).

    Article  CAS  Google Scholar 

  40. Chuman, Y. et al. Identification of a peptide binding motif for secreted frizzled-related protein-1. Peptides 25, 1831–1838 (2004).

    Article  CAS  Google Scholar 

  41. Slusarski, D.C., Corces, V.G. & Moon, R.T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413 (1997).

    Article  CAS  Google Scholar 

  42. Ahumada, A. et al. Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science 298, 2006–2010 (2002).

    Article  CAS  Google Scholar 

  43. Jin, E.J., Burrus, L.W. & Erickson, C.A. The expression patterns of Wnts and their antagonists during avian eye development. Mech. Dev. 116, 173–176 (2002).

    Article  CAS  Google Scholar 

  44. Liu, H., Mohamed, O., Dufort, D. & Wallace, V.A. Characterization of Wnt signaling components and activation of the Wnt canonical pathway in the murine retina. Dev. Dyn. 227, 323–334 (2003).

    Article  CAS  Google Scholar 

  45. Kubo, F., Takeichi, M. & Nakagawa, S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 130, 587–598 (2003).

    Article  CAS  Google Scholar 

  46. Xu, Q. et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895 (2004).

    Article  CAS  Google Scholar 

  47. Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 36, 417–422 (2004).

    Article  CAS  Google Scholar 

  48. Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J. Cell Biol. 162, 899–908 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Kanekar, S. et al. Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19, 981–994 (1997).

    Article  CAS  Google Scholar 

  50. Trousse, F., Marti, E., Gruss, P., Torres, M. & Bovolenta, P. Control of retinal ganglion cell axon growth: a new role for Sonic hedgehog. Development 128, 3927–3936 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank M. Vetter and Z. Jianmin for their generous gift of Fz2 morpholinos, for providing suggestions and sharing their unpublished data. We are grateful to F. van Horck for help with the morpholino-injection technique. We thank B. Harris and I. Iordanova for helpful discussions and J. Borrell for providing help with statistical analysis. We thank I. Dompablo and C. Capitan for excellent technical assistance. This study was supported by grants from the Spanish Ministerio de Educación y Ciencia (BFU-2004-01585), the European Union (QLG3-CT-2001-01460) the Comunidad Autónoma de Madrid (08.5/0049.1/2003) and the Institutional RED CIEN (G03/06) to P.B. and by a Programme Grant from the Wellcome Trust (UK) to C.H. J.R. was supported by a Glaxo–Consejo Superior de Investigaciones Cientificas (CSIC) predoctoral fellowship, a European Molecular Biology Organization (EMBO) short-term fellowship and a 'Development' traveling award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Bovolenta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression and purification of SFRP1 and its CRD and NTR domains. (PDF 154 kb)

Supplementary Fig. 2

Schematic representation of the Xenopus visual trajectory. (PDF 162 kb)

Supplementary Fig. 3

SFRP1 does not interfere with Wnt-induced neurite outgrowth in chick RGC. (PDF 117 kb)

Supplementary Fig. 4

SFRP1 mediated neurite outgrowth requires the activation of G proteins. (PDF 82 kb)

Supplementary Methods (PDF 75 kb)

Supplementary Note (PDF 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, J., Esteve, P., Weinl, C. et al. SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat Neurosci 8, 1301–1309 (2005). https://doi.org/10.1038/nn1547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1547

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing