Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels

Abstract

High-conductance, Ca2+-activated and voltage-gated (BK) channels set neuronal firing. They are almost universally activated by alcohol, leading to reduced neuronal excitability and neuropeptide release and to motor intoxication. However, several BK channels are inhibited by alcohol, and most other voltage-gated K+ channels are refractory to drug action. BK channels are homotetramers (encoded by Slo1) that possess a unique transmembrane segment (S0), leading to a cytosolic S0–S1 loop. We identified Thr107 of bovine slo (bslo) in this loop as a critical residue that determines BK channel responses to alcohol. In addition, the activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the cell controlled channel activity and alcohol modulation. Incremental CaMKII-mediated phosphorylation of Thr107 in the BK tetramer progressively increased channel activity and gradually switched the channel alcohol responses from robust activation to inhibition. Thus, CaMKII phosphorylation of slo Thr107 works as a 'molecular dimmer switch' that could mediate tolerance to alcohol, a form of neuronal plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BK channels are made of pore-forming α- (slo) and modulatory β-subunits.
Figure 2: Ethanol at clinically relevant concentrations increases bslo T107V channel activity (NPo) after expression of these slo subunits in Xenopus oocytes.
Figure 3: The valine-to-threonine mutation in the slo S0–S1 loop significantly modifies BK channel responses to acute ethanol exposure.
Figure 4: In vitro treatment with alkaline phosphatase shifts wild-type bslo channels into a state that is readily activatable by ethanol, but does not modify bslo T107V channel responses to alcohol.
Figure 5: In vitro treatment with KN-93, a selective CaMKII inhibitor, shifted wild-type bslo channels into a state that is readily activatable by ethanol, but it does not modify bslo T107V channel responses to alcohol.
Figure 6: CaMKII increases wild-type bslo channel activity and switches channel responses to ethanol from activation to inhibition.
Figure 7: CaMKII phosphorylation of Thr107 progressively switches channel responses to ethanol.

Similar content being viewed by others

References

  1. Kaczorowski, G.J., Knaus, H.G., Leonard, R.J., McManus, O.B. & Garcia, M.L. High-conductance calcium-activated potassium channels; structure, pharmacology, and function. J. Bioenerg. Biomembr. 28, 255–267 (1996).

    Article  CAS  Google Scholar 

  2. Toro, L., Wallner, M., Meera, P. & Tanaka, Y. Maxi-KCa, a unique member of the voltage-gated K+ channel superfamily. News Physiol. Sci. 13, 112–117 (1998).

    CAS  PubMed  Google Scholar 

  3. Tian, L. et al. Alternative splicing switches potassium channel sensitivity to protein phosphorylation. J. Biol. Chem. 276, 7717–7720 (2001).

    Article  CAS  Google Scholar 

  4. Sah, P. & Faber, E.S. Channels underlying neuronal calcium-activated potassium currents. Prog. Neurobiol. 66, 345–353 (2002).

    Article  CAS  Google Scholar 

  5. Krnjevic, K. Excitable membranes. in Cellular Biology and Toxicity of Anesthetics (ed. Fink, B.R.) 3–9 (Williams and Wilkins, Baltimore, 1972).

    Google Scholar 

  6. Crowder, C.M. Ethanol targets: a BK channel cocktail in C. elegans. Trends Neurosci. 27, 579–582 (2004).

    Article  CAS  Google Scholar 

  7. Gruss, M. et al. Ethanol reduces excitability in a subgroup of primary sensory neurons by activation of BKCa channels. Eur. J. Neurosci. 14, 1246–1256 (2001).

    Article  CAS  Google Scholar 

  8. Knott, T.K., Dopico, A.M., Dayanithi, G., Lemos, J. & Treistman, S.N. Integrated channel plasticity contributes to alcohol tolerance in neurohypophysial terminals. Mol. Pharmacol. 62, 135–142 (2002).

    Article  CAS  Google Scholar 

  9. Davies, A.G. et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666 (2003).

    Article  CAS  Google Scholar 

  10. Walters, F.S., Covarrubias, M. & Ellingson, J.S. Potent inhibition of the aortic smooth muscle maxi-K channel by clinical doses of ethanol. Am. J. Physiol. Cell Physiol. 279, C1107–C1115 (2000).

    Article  CAS  Google Scholar 

  11. Dopico, A.M. Ethanol sensitivity of BKCa channels cloned from arterial smooth muscle does not require the presence of the beta 1 subunit. Am. J. Physiol. Cell Physiol. 284, C1468–C1480 (2003).

    Article  CAS  Google Scholar 

  12. Liu, P., Xi, Q., Ahmed, A., Jaggar, J.H. & Dopico, A.M. Essential role for smooth muscle BK channels in alcohol-induced cerebrovascular constriction. Proc. Natl. Acad. Sci. USA 101, 18217–18222 (2004).

    Article  CAS  Google Scholar 

  13. Zakhari, S. Alcohol and the cardiovascular system: molecular mechanisms for beneficial and harmful action. Alcohol Health Res. World 21, 21–29 (1997).

    CAS  PubMed  Google Scholar 

  14. Dopico, A.M., Widmer, H., Wang, G., Lemos, J.R. & Treistman, S.N. Rat supraoptic magnocellular neurones show distinct large conductance, Ca2+-activated K+ channel subtypes in cell bodies versus nerve endings. J. Physiol. (Lond.) 519, 101–104 (1999).

    Article  CAS  Google Scholar 

  15. Dopico, A.M., Anantharam, V. & Treistman, S.N. Ethanol increases the activity of Ca++-dependent K+ (mslo) channels: functional interaction with cytosolic Ca++. J. Pharmacol. Exp. Ther. 284, 258–268 (1998).

    CAS  PubMed  Google Scholar 

  16. Liu, P., Liu, J., Huang, W., Li, M.D. & Dopico, A.M. Distinct regions of the slo subunit determine differential BKCa channel responses to ethanol. Alcohol. Clin. Exp. Res. 27, 1640–1644 (2003).

    Article  CAS  Google Scholar 

  17. Crowley, J.J., Treistman, S.N. & Dopico, A.M. Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers. Mol. Pharmacol. 64, 365–372 (2003).

    Article  CAS  Google Scholar 

  18. Weiger, T.M., Hermann, A. & Levitan, I.B. Modulation of calcium-activated potassium channels. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 188, 79–87 (2002).

    Article  CAS  Google Scholar 

  19. Solem, M., McMahon, T. & Messing, R.O. Protein kinase A regulates inhibition of N- and P/Q-type calcium channels by ethanol in PC12 cells. J. Pharmacol. Exp. Ther. 282, 1487–1495 (1997).

    CAS  PubMed  Google Scholar 

  20. Valenzuela, C.F., Cardoso, R.A., Lickteig, R., Browning, M.D. & Nixon, K.M. Acute effects of ethanol on recombinant kainate receptors: lack of role of protein phosphorylation. Alcohol. Clin. Exp. Res. 22, 1292–1299 (1998).

    CAS  PubMed  Google Scholar 

  21. Jakab, M., Weiger, T.M. & Hermann, A. Ethanol activates maxi Ca2+-activated K+ channels of clonal pituitary (GH3) cells. J. Membr. Biol. 157, 237–245 (1997).

    Article  CAS  Google Scholar 

  22. Schubert, R. & Nelson, M.T. Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol. Sci. 22, 505–512 (2001).

    Article  CAS  Google Scholar 

  23. Erondu, N. & Kennedy, M. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J. Neurosci. 5, 3270–3277 (1985).

    Article  CAS  Google Scholar 

  24. Greenwood, I.A., Leblanc, N. & Ledoux, J. Differential regulation of Ca2+-activated Cl currents in rabbit arterial and portal vein smooth muscle cells by Ca2+-calmodulin-dependent kinase. J. Physiol. (Lond.) 534, 395–408 (2001).

    Article  CAS  Google Scholar 

  25. Fink, C.C. & Meyer, T. Molecular mechanisms of CaMKII activation in neuronal plasticity. Curr. Opin. Neurobiol. 12, 293–299 (2002).

    Article  CAS  Google Scholar 

  26. Eshete, F. & Fields, R. Spike frequency decoding and autonomous activation of Ca2+-calmodulin-dependent protein kinase II in dorsal root ganglion neurons. J. Neurosci. 21, 6694–6705 (2001).

    Article  CAS  Google Scholar 

  27. Kim, I. et al. Ca2+-calmodulin-dependent protein kinase II-dependent activation of contractility in ferret aorta. J. Physiol. (Lond.) 526, 367–374 (2000).

    Article  CAS  Google Scholar 

  28. Pearson, R.B. & Kemp, B.E. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol. 200, 62–81 (1991).

    Article  CAS  Google Scholar 

  29. Covarrubias, M., Vyas, T.B., Escobar, L. & Wei, A. Alcohols inhibit a cloned potassium channel at a discrete saturable site. Insights into the molecular basis of general anesthesia. J. Biol. Chem. 270, 19408–19416 (1995).

    Article  CAS  Google Scholar 

  30. Harris, R.A. Ethanol actions on multiple ion channels: which are important? Alcohol. Clin. Exp. Res. 23, 1563–1570 (1999).

    CAS  PubMed  Google Scholar 

  31. Zhou, X.B., Ruth, P., Schlossmann, J., Hofmann, F. & Korth, M. Protein phosphatase 2A is essential for the activation of Ca2+-activated K+ currents by cGMP-dependent protein kinase in tracheal smooth muscle and Chinese hamster ovary cells. J. Biol. Chem. 271, 19760–19767 (1996).

    Article  CAS  Google Scholar 

  32. Stevens, I., Rondelez, E., Merlevede, W. & Goris, J. Cloning and differential expression of new calcium, calmodulin-dependent protein kinase II isoforms in Xenopus laevis oocytes and several adult tissues. J. Biochem. 129, 551–560 (2001).

    Article  CAS  Google Scholar 

  33. Mamiya, N. et al. Inhibition of acid secretion in gastric parietal cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-93. Biochem. Biophys. Res. Commun. 195, 608–615 (1993).

    Article  CAS  Google Scholar 

  34. Niu, X. & Magleby, K.L. Stepwise contribution of each subunit to the cooperative activation of BK channels by Ca2+. Proc. Natl. Acad. Sci. USA 99, 11441–11446 (2002).

    Article  CAS  Google Scholar 

  35. Derkach, V., Barria, A. & Soderling, T.R. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269–3274 (1999).

    Article  CAS  Google Scholar 

  36. Mansour, S.J., Candia, J.M., Matsuura, J.E., Manning, M.C. & Ahn, N.G. Interdependent domains controlling the enzymatic activity of mitogen-activated protein kinase kinase 1. Biochemistry 35, 15529–15536 (1996).

    Article  CAS  Google Scholar 

  37. Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389, 385–389 (1997).

    Article  CAS  Google Scholar 

  38. Sessoms-Sikes, J.S., Hamilton, M.E., Liu, L.X., Lovinger, D.M. & Machu, T.K. A mutation in transmembrane domain II of the 5-hydroxytryptamine (3A) receptor stabilizes channel opening and alters alcohol modulatory actions. J. Pharmacol. Exp. Ther. 306, 595–604 (2003).

    Article  CAS  Google Scholar 

  39. Borghese, C.M., Ali, D.N., Bleck, V. & Harris, R.A. Acetylcholine and alcohol sensitivity of neuronal nicotinic acetylcholine receptors: mutations in transmembrane domains. Alcohol. Clin. Exp. Res. 26, 1764–1772 (2002).

    Article  CAS  Google Scholar 

  40. Ren, H., Honse, Y. & Peoples, R.W. A site of alcohol action in the fourth membrane-associated domain of the N-methyl-D-aspartate receptor. J. Biol. Chem. 278, 48815–48820 (2003).

    Article  CAS  Google Scholar 

  41. Mascia, M.P., Mihic, S.J., Valenzuela, C.F., Schofield, P.R. & Harris, R.A. A single amino acid determines differences in ethanol actions on strychnine-sensitive glycine receptors. Mol. Pharmacol. 50, 402–406 (1996).

    CAS  PubMed  Google Scholar 

  42. Lewohl, J.M. et al. G protein–coupled inwardly rectifying potassium channels are targets of alcohol action. Nat. Neurosci. 2, 1084–1090 (1999).

    Article  CAS  Google Scholar 

  43. Müller, M., Madan, D. & Levitan, I.B. State-dependent modulation of mSlo, a cloned calcium-dependent potassium channel. Neuropharmacology 35, 877–886 (1996).

    Article  Google Scholar 

  44. Brayden, J.E. & Nelson, M.T. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256, 532–535 (1992).

    Article  CAS  Google Scholar 

  45. Martin, G. et al. Somatic localization of a specific large-conductance calcium-activated potassium channel subtype controls compartmentalized ethanol sensitivity in the nucleus accumbens. J. Neurosci. 24, 6563–6572 (2004).

    Article  CAS  Google Scholar 

  46. Smith, T.L. & Navratilova, E. Increased calcium/calmodulin protein kinase activity in astrocytes chronically exposed to ethanol: influences on glutamate transport. Neurosci. Lett. 269, 145–148 (1999).

    Article  CAS  Google Scholar 

  47. Randby, A.T., Selmer-Olsen, I. & Baevre, L. Effect of ethanol in feed on milk flavor and chemical composition. J. Dairy Sci. 82, 420–428 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Bahouth, S. Tavalin, J. Jaggar and D. Armbruster for critically reading the manuscript, and K. Malik for helpful discussion. This work was supported by the US National Institutes of Health (grants AA11560 and HL77424 to A.M.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro M Dopico.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Increasing the proportion of bslo T107V Y315V in the tetramer increases channel unitary conductance in a discrete manner. (PDF 79 kb)

Supplementary Note

CamKII and ethanol modify bslo currents by producing a parallel shift in the G/Gmax-V relationship. (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Asuncion-Chin, M., Liu, P. et al. CaM kinase II phosphorylation of slo Thr107 regulates activity and ethanol responses of BK channels. Nat Neurosci 9, 41–49 (2006). https://doi.org/10.1038/nn1602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing