Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ROBO directs axon crossing of segmental boundaries by suppressing responsiveness to relocalized Netrin

Abstract

Networks in the CNS consist of neural modules that are connected in a repetitive array. Whereas individual modules contain guidance information along which axons track within the unit, these guidance cues hinder axon extension across module boundaries. We investigated how axons solve this 'boundary problem' by analyzing the longitudinal connections of neuromeres in Drosophila melanogaster. The initial trajectory of the longitudinal axons is guided by Netrin, which is localized on commissural axons by its receptor, Frazzled. The Netrin cue on the commissure of the next segment can act as a barrier to longitudinal axons, inhibiting their extension and misguiding them contralaterally along the commissure. We show that, before reaching the segmental boundary, the longitudinal axons' responsiveness to Netrin presented on the commissure is suppressed by Roundabout (ROBO), through counteracting Gq signaling. The absence of suppression causes the robo phenotype: longitudinal axons project toward the midline, as if running around a roundabout (rotary).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trajectories of four longitudinal pioneer neurons.
Figure 2: The roundabout-like phenotype of the robo mutant is suppressed by removing Netrin (Net).
Figure 3: Signaling function of Frazzled is not required to generate the roundabout-like axon trajectory of the robo mutant.
Figure 4: Misprojection of the ascending pioneer neurons in robo−/−.
Figure 5: ROBO suppresses the responsiveness to Netrin presented by Frazzled.
Figure 6: Suppression of Netrin responsiveness by ROBO requires its ligand Slit.
Figure 7: ROBO counteracts Gq signaling pathway to suppress Netrin sensitivity.

Similar content being viewed by others

References

  1. Burrows, M. Anatomy of the nervous system. in The Neurobiology of an Insect Brain 12–14 (Oxford Univ. Press, New York, 1996).

    Chapter  Google Scholar 

  2. Jessell, T.M. & Sanes, J.R. The induction and patterning of the nervous system. in Principles of Neural Science 4th edn. (eds. Kandel, E.R., Schwartz, J.H. & Jessell, T.M.) Ch. 52, 1021 (Elsevier Science Publishing, New York, 2000).

    Google Scholar 

  3. Hubel, D.H. & Wiesel, T.N. Shape and arrangement of columns in cat's striate cortex. J. Physiol. (Lond.) 165, 559–568 (1963).

    Article  CAS  Google Scholar 

  4. Ishii, N., Wadsworth, W.G., Stern, B.D., Culotti, J.G. & Hedgecock, E.M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873–881 (1992).

    Article  CAS  Google Scholar 

  5. Hedgecock, E.M., Culotti, J.G. & Hall, D.H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    Article  CAS  Google Scholar 

  6. Harris, R., Sabatelli, L.M. & Seeger, M.A. Guidance cues at the Drosophila CNS midline: identification and characterization of two Drosophila Netrin/UNC-6 homologs. Neuron 17, 217–228 (1996).

    Article  CAS  Google Scholar 

  7. Mitchell, K.J. et al. Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons. Neuron 17, 203–215 (1996).

    Article  CAS  Google Scholar 

  8. Serafini, T. et al. The Netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  9. Kidd, T., Bland, K.S. & Goodman, C.S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785–794 (1999).

    Article  CAS  Google Scholar 

  10. Brose, K. et al. Slit proteins bind robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    Article  CAS  Google Scholar 

  11. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998).

    Article  CAS  Google Scholar 

  12. Shirasaki, R., Katsumata, R. & Murakami, F. Change in chemoattractant responsiveness of developing axons at an intermediate target. Science 279, 105–107 (1998).

    Article  CAS  Google Scholar 

  13. Hiramoto, M., Hiromi, Y., Giniger, E. & Hotta, Y. The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution. Nature 406, 886–889 (2000).

    Article  CAS  Google Scholar 

  14. Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C.S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409–426 (1993).

    Article  CAS  Google Scholar 

  15. Flanagan, J.G. & Van Vactor, D. Through the looking glass: axon guidance at the midline choice point. Cell 92, 429–432 (1998).

    Article  CAS  Google Scholar 

  16. Stoeckli, E.T. & Landmesser, L.T. Axon guidance at choice points. Curr. Opin. Neurobiol. 8, 73–79 (1998).

    Article  CAS  Google Scholar 

  17. Bashaw, G.J., Kidd, T., Murray, D., Pawson, T. & Goodman, C.S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the Roundabout receptor. Cell 101, 703–715 (2000).

    Article  CAS  Google Scholar 

  18. Hidalgo, A. & Brand, A.H. Targeted neuronal ablation: the role of pioneer neurons in guidance and fasciculation in the CNS of Drosophila. Development 124, 3253–3262 (1997).

    CAS  PubMed  Google Scholar 

  19. Goodman, C.S. Embryonic development of the Drosophila central nervous system. in The Development of Drosophila Melanogaster (eds Bate, M. & Arias, A.M.) 1171–1180 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  20. Bastiani, M.J., du Lac, S. & Goodman, C.S. Guidance of neuronal growth cones in the grasshopper embryo. I. Recognition of a specific axonal pathway by the pCC neuron. J. Neurosci. 6, 3518–3531 (1986).

    Article  CAS  Google Scholar 

  21. Keleman, K. et al. Comm sorts Robo to control axon guidance at the Drosophila midline. Cell 110, 415–427 (2002).

    Article  CAS  Google Scholar 

  22. Kolodziej, P.A. et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    Article  CAS  Google Scholar 

  23. Gitai, Z., Yu, T.W., Lundquist, E.A., Tessier-Lavigne, M. & Bargmann, C.I. The Netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through Enabled and, in parallel, Rac and UNC-115/AbLIM. Neuron 37, 53–65 (2003).

    Article  CAS  Google Scholar 

  24. Furrer, M.P., Kim, S., Wolf, B. & Chiba, A. Robo and Frazzled/DCC mediate dendritic guidance at the CNS midline. Nat. Neurosci. 6, 223–230 (2003).

    Article  CAS  Google Scholar 

  25. Winberg, M.L., Mitchell, K.J. & Goodman, C.S. Genetic analysis of the mechanisms controlling target selection: complementary and combinatorial functions of Netrins, semaphorins, and IgCAMs. Cell 93, 581–591 (1998).

    Article  CAS  Google Scholar 

  26. Johnson, K.G. et al. Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent Slit during midline axon guidance. Curr. Biol. 14, 499–504 (2004).

    Article  CAS  Google Scholar 

  27. Steigemann, P., Molitor, A., Fellert, S., Jackle, H. & Vorbruggen, G. Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by Slit/Robo signaling. Curr. Biol. 14, 225–230 (2004).

    Article  CAS  Google Scholar 

  28. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of Netrin attraction by Slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    Article  CAS  Google Scholar 

  29. Ming, G.L. et al. cAMP-dependent growth cone guidance by Netrin-1. Neuron 19, 1225–1235 (1997).

    Article  CAS  Google Scholar 

  30. Ratnaparkhi, A., Banerjee, S. & Hasan, G. Altered levels of Gq activity modulate axonal pathfinding in Drosophila. J. Neurosci. 22, 4499–4508 (2002).

    Article  CAS  Google Scholar 

  31. Berstein, G. et al. Phospholipase C-beta 1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70, 411–418 (1992).

    Article  CAS  Google Scholar 

  32. Lechleiter, J.D. & Clapham, D.E. Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69, 283–294 (1992).

    Article  CAS  Google Scholar 

  33. Uchiyama, T., Yoshikawa, F., Hishida, A., Furuichi, T. & Mikoshiba, K. A novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP3) absorbent traps IP3, resulting in specific inhibition of IP3-mediated calcium signaling. J. Biol. Chem. 277, 8106–8113 (2002).

    Article  CAS  Google Scholar 

  34. Sabatier, C. et al. The divergent Robo family protein Rig-1/Robo3 is a negative regulator of Slit responsiveness required for midline crossing by commissural axons. Cell 117, 157–169 (2004).

    Article  CAS  Google Scholar 

  35. Jen, J.C. et al. Mutations in a Human ROBO Gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304, 1509–1513 (2004).

    Article  CAS  Google Scholar 

  36. Wang, Q. & Wadsworth, W.G. The C domain of Netrin UNC-6 silences calcium/calmodulin-dependent protein kinase- and diacylglycerol-dependent axon branching in Caenorhabditis elegans. J. Neurosci. 22, 2274–2282 (2002).

    Article  CAS  Google Scholar 

  37. Lim, Y.S., Mallapur, S., Kao, G., Ren, X.C. & Wadsworth, W.G. Netrin UNC-6 and the regulation of branching and extension of motoneuron axons from the ventral nerve cord of Caenorhabditis elegans. J. Neurosci. 19, 7048–7056 (1999).

    Article  CAS  Google Scholar 

  38. Yoshikawa, S., McKinnon, R.D., Kokel, M. & Thomas, J.B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003).

    Article  CAS  Google Scholar 

  39. Bonkowsky, J.L., Yoshikawa, S., O'Keefe, D.D., Scully, A.L. & Thomas, J.B. Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature 402, 540–544 (1999).

    Article  CAS  Google Scholar 

  40. Hivert, B., Liu, Z., Chuang, C.Y., Doherty, P. & Sundaresan, V. Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol. Cell. Neurosci. 21, 534–545 (2002).

    Article  CAS  Google Scholar 

  41. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  Google Scholar 

  42. Colamarino, S.A. & Tessier-Lavigne, M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81, 621–629 (1995).

    Article  CAS  Google Scholar 

  43. Noakes, P.G., Gautam, M., Mudd, J., Sanes, J.R. & Merlie, J.P. Aberrant differentiation of neuromuscular junctions in mice lacking S-laminin/laminin Beta 2. Nature 374, 258–262 (1995).

    Article  CAS  Google Scholar 

  44. Porter, B.E., Weis, J. & Sanes, J.R.A. Motoneuron-selective stop signal in the synaptic protein S-laminin. Neuron 14, 549–559 (1995).

    Article  CAS  Google Scholar 

  45. Saheki, Y. et al. A new approach to inhibiting astrocytic IP3-induced intracellular calcium increase in an astrocyte-neuron co-culture system. Brain Res. 1055, 196–201 (2005).

    Article  CAS  Google Scholar 

  46. Mlodzik, M. & Hiromi, Y. Enhancer trap method in Drosophila: its application to neurobiology. In “Gene Expression in Neural Tissues”. Methods in Neurosciences 9, 397–414 (1992).

    Article  CAS  Google Scholar 

  47. Tear, G. et al. commissureless controls growth cone guidance across the CNS midline in Drosophila and encodes a novel membrane protein. Neuron 16, 501–514 (1996).

    Article  CAS  Google Scholar 

  48. Grenningloh, G., Rehm, E.J. & Goodman, C.S. Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell 67, 45–57 (1991).

    Article  CAS  Google Scholar 

  49. Rothberg, J.M., Jacobs, J.R., Goodman, C.S. & Artavanis-Tsakonas, S. Slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev. 4, 2169–2187 (1990).

    Article  CAS  Google Scholar 

  50. Hummel, T., Krukkert, K., Roos, J., Davis, G. & Klambt, C. Drosophila Futsch/22C10 Is a MAP1B-like Protein Required for Dendritic and Axonal Development. Neuron 26, 357–370 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.S. Goodman, A. Hidalgo, P. Kolodziej, M. Seeger, G. Technau, A. Ratnaparkhi and the Bloomington Stock Center for fly strains; P. Kolodziej, M. Seeger and the DSHB for fly DNA clones and antibodies; M. Matsushita and S. Li for the GFP-IP3 sponge cDNA; K. Takei for helpful advice on the IP3 experiment; T. Katsuki, T. Nagasaka and all the members of the Hiromi laboratory for helpful discussions; Y. Iketani, M. Aono and C. Asaka for technical assistance; and E. Giniger and S. Butler for helpful advice on the manuscript. This work was funded by the Precursory Research for Embryonic Science and Technology (M.H.) and the Core Research for Evolutional Science and Technology (Y.H.) programs of the Japan Science and Technology Agency. Funding was also provided by the Japan Society for the Promotion of Science (M.H.) and the Ministry of Education, Science, Sports and Culture of Japan (Y.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masaki Hiramoto or Yasushi Hiromi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequential patterning of commissural and longitudinal axons. (PDF 6033 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiramoto, M., Hiromi, Y. ROBO directs axon crossing of segmental boundaries by suppressing responsiveness to relocalized Netrin. Nat Neurosci 9, 58–66 (2006). https://doi.org/10.1038/nn1612

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1612

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing