Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct modes of regulated receptor insertion to the somatodendritic plasma membrane

Abstract

Many neural signaling receptors are regulated by endocytosis, but little is known about receptor insertion into the plasma membrane. Time-lapse imaging of the β2 adrenergic receptor expressed in cultured rat hippocampal neurons, using pH-sensitive green fluorescent protein tagging and total internal reflection fluorescence microscopy, resolved distinct vesicular fusion events mediating receptor insertion into the somatodendritic plasma membrane. A 'transient' insertion mode resulted in rapid lateral dispersion of receptors immediately after insertion. A 'persistent' insertion mode resulted in the retention of inserted receptors in surface-accessible domains, which were relatively immobile for a prolonged 'wait' period before dispersing laterally. Distinct insertion modes were oppositely regulated by receptor activation and by mechanisms differing in their dependence on the signaling effector cyclic AMP–dependent protein kinase. These results reveal a new mechanism for homeostatic regulation of postsynaptic signaling and a 'kiss-and-wait' mode of regulated membrane protein insertion in neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SpH-β2AR insertion events in the cell body.
Figure 2: Time course and lateral dispersion of SpH insertion events from sites in the plasma membrane distinct from clathrin-coated pits.
Figure 3: SpH-β2AR insertion events in dendrites.
Figure 4: Regulation of SpH-β2AR surface insertion events by agonist.
Figure 5: Role of PKA in regulating transient SpH-β2AR insertion events.

Similar content being viewed by others

References

  1. Scannevin, R.H. & Huganir, R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141 (2000).

    Article  CAS  Google Scholar 

  2. Carroll, R.C., Beattie, E.C., von Zastrow, M. & Malenka, R.C. Role of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2, 315–324 (2001).

    Article  CAS  Google Scholar 

  3. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  Google Scholar 

  4. Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

    Article  CAS  Google Scholar 

  5. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614 (2002).

    Article  CAS  Google Scholar 

  6. Sheng, M. & Kim, M.J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002).

    Article  CAS  Google Scholar 

  7. Malenka, R.C. The long-term potential of LTP. Nat. Rev. Neurosci. 4, 923–926 (2003).

    Article  CAS  Google Scholar 

  8. Nicoll, R.A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).

    Article  CAS  Google Scholar 

  9. Keith, D.E. et al. mu-Opioid receptor internalization: opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain. Mol. Pharmacol. 53, 377–384 (1998).

    Article  CAS  Google Scholar 

  10. Whistler, J.L. & von Zastrow, M. Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc. Natl. Acad. Sci. USA 95, 9914–9919 (1998).

    Article  CAS  Google Scholar 

  11. Carroll, R.C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    Article  CAS  Google Scholar 

  12. Beattie, E.C. et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat. Neurosci. 3, 1291–1300 (2000).

    Article  CAS  Google Scholar 

  13. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  14. Kim, K.A. & von Zastrow, M. Neurotrophin-regulated sorting of opioid receptors in the biosynthetic pathway of neurosecretory cells. J. Neurosci. 23, 2075–2085 (2003).

    Article  CAS  Google Scholar 

  15. Guan, J.S. et al. Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell 122, 619–631 (2005).

    Article  CAS  Google Scholar 

  16. Adesnik, H., Nicoll, R.A. & England, P.M. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48, 977–985 (2005).

    Article  CAS  Google Scholar 

  17. Gainetdinov, R.R., Premont, R.T., Bohn, L.M., Lefkowitz, R.J. & Caron, M.G. Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107–144 (2004).

    Article  CAS  Google Scholar 

  18. Davare, M.A. et al. A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293, 98–101 (2001).

    Article  CAS  Google Scholar 

  19. Yu, S.S., Lefkowitz, R.J. & Hausdorff, W.P. Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J. Biol. Chem. 268, 337–341 (1993).

    CAS  PubMed  Google Scholar 

  20. Pippig, S., Andexinger, S. & Lohse, M.J. Sequestration and recycling of beta 2-adrenergic receptors permit receptor resensitization. Mol. Pharmacol. 47, 666–676 (1995).

    CAS  PubMed  Google Scholar 

  21. Lefkowitz, R.J., Pitcher, J., Krueger, K. & Daaka, Y. Mechanisms of beta-adrenergic receptor desensitization and resensitization. Adv. Pharmacol. 42, 416–420 (1998).

    Article  CAS  Google Scholar 

  22. Pierce, K.L. & Lefkowitz, R.J. Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat. Rev. Neurosci. 2, 727–733 (2001).

    Article  CAS  Google Scholar 

  23. Xiang, Y. & Kobilka, B. The PDZ-binding motif of the beta2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes. Proc. Natl. Acad. Sci. USA 100, 10776–10781 (2003).

    Article  CAS  Google Scholar 

  24. Hanyaloglu, A.C., McCullagh, E. & von Zastrow, M. Essential role of Hrs in a recycling mechanism mediating functional resensitization of cell signaling. EMBO J. 24, 2265–2283 (2005).

    Article  CAS  Google Scholar 

  25. Goodman, O.B., Jr. et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383, 447–450 (1996).

    Article  CAS  Google Scholar 

  26. Ferguson, S.S. et al. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366 (1996).

    Article  CAS  Google Scholar 

  27. Cao, T.T., Deacon, H.W., Reczek, D., Bretscher, A. & von Zastrow, M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401, 286–290 (1999).

    Article  CAS  Google Scholar 

  28. Shenoy, S.K., McDonald, P.H., Kohout, T.A. & Lefkowitz, R.J. Regulation of receptor fate by ubiquitination of activated beta 2- adrenergic receptor and beta-arrestin. Science 294, 1307–1313 (2001).

    Article  CAS  Google Scholar 

  29. Whistler, J.L. et al. Modulation of post-endocytic sorting of G protein-coupled receptors. Science 297, 615–620 (2002).

    Article  CAS  Google Scholar 

  30. Miesenbock, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  Google Scholar 

  31. Sankaranarayanan, S., De Angelis, D., Rothman, J.E. & Ryan, T.A. The use of pHluorins for optical measurements of presynaptic activity. Biophys. J. 79, 2199–2208 (2000).

    Article  CAS  Google Scholar 

  32. Steyer, J.A. & Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell Biol. 2, 268–275 (2001).

    Article  CAS  Google Scholar 

  33. Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  34. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  Google Scholar 

  35. Hegener, O. et al. Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry 43, 6190–6199 (2004).

    Article  CAS  Google Scholar 

  36. Hoogland, T.M. & Saggau, P. Facilitation of L-type Ca2+ channels in dendritic spines by activation of beta2 adrenergic receptors. J. Neurosci. 24, 8416–8427 (2004).

    Article  CAS  Google Scholar 

  37. Xiang, Y. & Kobilka, B.K. Myocyte adrenoceptor signaling pathways. Science 300, 1530–1532 (2003).

    Article  CAS  Google Scholar 

  38. Klyachko, V.A. & Jackson, M.B. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89–92 (2002).

    Article  CAS  Google Scholar 

  39. Holroyd, P., Lang, T., Wenzel, D., De Camilli, P. & Jahn, R. Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc. Natl. Acad. Sci. USA 99, 16806–16811 (2002).

    Article  CAS  Google Scholar 

  40. Taraska, J.W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S. & Almers, W. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc. Natl. Acad. Sci. USA 100, 2070–2075 (2003).

    Article  CAS  Google Scholar 

  41. Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  Google Scholar 

  42. Aravanis, A.M., Pyle, J.L. & Tsien, R.W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003).

    Article  CAS  Google Scholar 

  43. Ryan, T.A. Kiss-and-run, fuse-pinch-and-linger, fuse-and-collapse: the life and times of a neurosecretory granule. Proc. Natl. Acad. Sci. USA 100, 2171–2173 (2003).

    Article  CAS  Google Scholar 

  44. von Zastrow, M. & Kobilka, B.K. Ligand-regulated internalization and recycling of human beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J. Biol. Chem. 267, 3530–3538 (1992).

    CAS  PubMed  Google Scholar 

  45. Brewer, G.J., Torricelli, J.R., Evege, E.K. & Price, P.J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567–576 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Edwards, T. Ryan, N. Stuurman and R. Vale for valuable discussions; J. Rothman (Columbia University, New York) for providing pH-sensitive GFP constructs; W. Almers (Vollum Institute, Portland, Oregon) for the DsRed-tagged clathrin light chain construct; A. Douglass and A. Marley for constructing SpH-β2AR, and B. Lauffer (all University of California San Francisco, San Francisco) for β2AR antiserum; P. Herzmark for use of the objective warmer; and H. Bourne and R. Nicoll for critical comments on the manuscript. These studies were supported by research grants from the US National Institutes of Health and the National Institute on Drug Abuse. G.A.Y. was supported in part by the Pew Latin American Fellows Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark von Zastrow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Functional integrity of SpH–B2AR and expression in cultured neurons. (PDF 51 kb)

Supplementary Fig. 2

Plasma membrane targeting, ligand–induced internalization and surface localization of SpH–B2AR in hippocampal neurons. (PDF 141 kb)

Supplementary Fig. 3

Recycling sequence–dependence and MES accessibility of SpH–B2AR insertion events. (PDF 75 kb)

Supplementary Methods (PDF 86 kb)

Supplementary Video 1

Sequential TIRF images from hippocampal neurons expressing SpH–B2AR and exposed to 10 μM isoproterenol for 10 minutes prior to imaging. Interval between frames is 100 ms. (QT 12880 kb)

Supplementary Video 2

A region of the plasma membrane showing examples of 'transient' (circled in red) and 'persistent' (circled in green) SpH–B2AR insertion events occurring in adjacent regions of the somatic plasma membrane. Hippocampal neurons were exposed to 10 μM isoproterenol for 10 minutes prior to sequential TIRF imaging (100 ms / frame). Trace below the movie shows peak pixel intensity in each circled region of the plasma membrane over time. (QT 13413 kb)

Supplementary Video 3

Example of a persistent SpH–B2AR insertion event occurring on a proximal dendrite. A number of transient insertion events are seen in the somatic plasma membrane also present in the image series. Hippocampal neurons were exposed to 10 μM isoproterenol for 10 minutes prior to sequential TIRF imaging (100 ms / frame). (QT 1403 kb)

Supplementary Video 4

Example of a transient SpH–B2AR insertion event occurring on a distal dendrite. Interval between frames is 100 ms. (QT 702 kb)

Supplementary Video 5

Transient SpH–B2AR insertion event in a distal dendrite (corresponding to that analyzed in Fig. 3 c and d). Interval between frames is 100 ms. (QT 242 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudowski, G., Puthenveedu, M. & von Zastrow, M. Distinct modes of regulated receptor insertion to the somatodendritic plasma membrane. Nat Neurosci 9, 622–627 (2006). https://doi.org/10.1038/nn1679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing