Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A cognitive signal for the proactive timing of action in macaque LIP

Abstract

Natural movements often occur without any immediate external event to cause them. In contrast to reactive movements, which are directly triggered by external cues, it is less clear how these proactive actions are initiated or when they will be made. We found that single neurons in the macaque's lateral intraparietal area (LIP) exhibit gradual firing rate elevations that reach a consistent value—which may correspond to a threshold—at the time of proactive, but not reactive, arm movements. This activity differs from sensory- and motor-related activity recorded in nearby cortical areas and could provide an internal trigger for action when abrupt external triggers in the visual input are unavailable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral task and neuronal recording sites.
Figure 2: Structural T1-weighted MRI images and recording sites.
Figure 3: Neuronal activity aligned to the time at which the dot turned.
Figure 4: Neuronal activity aligned to the start of dot motion and grouped by time of arm movement.
Figure 5: Functional bimodality in LIP.
Figure 6: Single-neuron activity in LIP is consistent with a variable rate of rise to threshold.
Figure 7: Neuronal activity 300 ms before the lever press.
Figure 8: Proactive timing activity does not correlate with delay period modulation in a memory saccade task.

Similar content being viewed by others

References

  1. Seal, J. & Commenges, D. A quantitative analysis of stimulus- and movement-related responses in the posterior parietal cortex of the monkey. Exp. Brain Res. 58, 144–153 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Hanes, D.P. & Schall, J.D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. DiCarlo, J.J. & Maunsell, J.H. Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. J. Neurophysiol. 93, 2974–2986 (2005).

    Article  PubMed  Google Scholar 

  4. Cook, E.P. & Maunsell, J.H. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat. Neurosci. 5, 985–994 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Gibson, J.J. The Ecological Approach to Visual Perception (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1979).

    Google Scholar 

  6. Gallistel, C.R. The Organization of Learning (eds. Gleitman, L., Carey, S., Newport, E. & Spelke, E.) (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  7. Glimcher, P.W. Decisions, Uncertainty, and the Brain (MIT Press, Cambridge, Massachusetts, 2003).

  8. Romo, R. & Schultz, W. Role of primate basal ganglia and frontal cortex in the internal generation of movements. III. Neuronal activity in the supplementary motor area. Exp. Brain Res. 91, 396–407 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Deecke, L. Planning, preparation, execution, and imagery of volitional action. Brain Res. Cogn. Brain Res. 3, 59–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, I.H. & Assad, J.A. Putaminal activity for simple reactions or self-timed movements. J. Neurophysiol. 89, 2528–2537 (2003).

    Article  PubMed  Google Scholar 

  11. Roitman, J.D. & Shadlen, M.N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colby, C.L., Duhamel, J.R. & Goldberg, M.E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Janssen, P. & Shadlen, M.N. A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 8, 234–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Eskandar, E.N. & Assad, J.A. Distinct nature of directional signals among parietal cortical areas during visual guidance. J. Neurophysiol. 88, 1777–1790 (2002).

    Article  PubMed  Google Scholar 

  15. Lee, D.N., Georgopoulos, A.P., Clark, M.J., Craig, C.M. & Port, N.L. Guiding contact by coupling the taus of gaps. Exp. Brain Res. 139, 151–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Snyder, L.H., Batista, A.P. & Andersen, R.A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Bisley, J.W. & Goldberg, M.E. Neuronal activity in the lateral intraparietal area and spatial attention. Science 299, 81–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Mazurek, M.E., Roitman, J.D., Ditterich, J. & Shadlen, M.N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269 (2003).

    Article  PubMed  Google Scholar 

  19. Land, M.F. & Lee, D.N. Where we look when we steer. Nature 369, 742–744 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Land, M.F. & McLeod, P. From eye movements to actions: how batsmen hit the ball. Nat. Neurosci. 3, 1340–1345 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Land, M., Mennie, N. & Rusted, J. The roles of vision and eye movements in the control of activities of daily living. Perception 28, 1311–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Johansson, R.S., Westling, G., Backstrom, A. & Flanagan, J.R. Eye-hand coordination in object manipulation. J. Neurosci. 21, 6917–6932 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Batista, A.P., Buneo, C.A., Snyder, L.H. & Andersen, R.A. Reach plans in eye-centered coordinates. Science 285, 257–260 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Buneo, C.A., Jarvis, M.R., Batista, A.P. & Andersen, R.A. Direct visuomotor transformations for reaching. Nature 416, 632–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Blatt, G.J., Andersen, R.A. & Stoner, G.R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Lewis, J.W. & Van Essen, D.C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura, H. et al. From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques. J. Neurosci. 21, 8174–8187 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meck, W.H. Neuropsychology of timing and time perception. Brain Cogn. 58, 1–8 (2005).

    Article  PubMed  Google Scholar 

  29. Onoe, H. et al. Cortical networks recruited for time perception: a monkey positron emission tomography (PET) study. Neuroimage 13, 37–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Brody, C.D., Hernandez, A., Zainos, A. & Romo, R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13, 1196–1207 (2003).

    Article  PubMed  Google Scholar 

  31. Riehle, A. Preparation for action: one of the key functions of the motor cortex. in Motor Cortex in Voluntary Movements: a Distributed System for Distributed Functions (eds. Riehle, A. & Vaadia, E.) 213–240 (CRC Press, Boca Raton, Florida, 2005).

    Google Scholar 

  32. Lewis, J.W. & Van Essen, D.C. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Matelli, M., Govoni, P., Galletti, C., Kutz, D.F. & Luppino, G. Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J. Comp. Neurol. 402, 327–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Scherberger, H. et al. Magnetic resonance image-guided implantation of chronic recording electrodes in the macaque intraparietal sulcus. J. Neurosci. Methods 130, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Barash, S., Bracewell, R.M., Fogassi, L., Gnadt, J.W. & Andersen, R.A. Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J. Neurophysiol. 66, 1095–1108 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Barash, S., Bracewell, R.M., Fogassi, L., Gnadt, J.W. & Andersen, R.A. Saccade-related activity in the lateral intraparietal area. II. Spatial properties. J. Neurophysiol. 66, 1109–1124 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Maimon, T. Herrington, A. Fanini, D. Freedman, C. Padoa-Schioppa and A. Hoffius for comments on the manuscript. K. Irwin, T. LaFratta, M. LaFratta, J. LeBlanc and D. Averbuch provided technical assistance. This work was supported by grant EY12106 from the National Eye Institute, the McKnight Endowment Fund for Neuroscience, and by a predoctoral National Science Foundation fellowship to G.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A Assad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maimon, G., Assad, J. A cognitive signal for the proactive timing of action in macaque LIP. Nat Neurosci 9, 948–955 (2006). https://doi.org/10.1038/nn1716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing