Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic shifts of visual receptive fields in cortical area MT by spatial attention

Abstract

Voluntary attention is the top-down selection process that focuses cortical processing resources on the most relevant sensory information. Spatial attention—that is, selection based on stimulus position—alters neuronal responsiveness throughout primate visual cortex. It has been hypothesized that it also changes receptive field profiles by shifting their centers toward attended locations and by shrinking them around attended stimuli. Here we examined, at high resolution, receptive fields in cortical area MT of rhesus macaque monkeys when their attention was directed to different locations within and outside these receptive fields. We found a shift of receptive fields, even far from the current location of attention, accompanied by a small amount of shrinkage. Thus, already in early extrastriate cortex, receptive fields are not static entities but are highly modifiable, enabling the dynamic allocation of processing resources to attended locations and supporting enhanced perception within the focus of attention by effectively increasing the local cortical magnification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental protocol.
Figure 2: Receptive field profiles of an example cell, as 2D surface plots.
Figure 3: Quantification of RF shift and shrinkage.
Figure 4: Receptive field shift when attention is directed inside versus outside the receptive field.

References

  1. Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 72–75 (1998).

    Article  CAS  Google Scholar 

  2. He, S., Cavanagh, P. & Intriligator, J. Attentional resolution and the locus of visual awareness. Nature 383, 334–337 (1996).

    Article  CAS  Google Scholar 

  3. Hawkins, H.L. et al. Visual attention modulates signal detectability. J. Exp. Psychol. Hum. Percept. Perform. 16, 802–811 (1990).

    Article  CAS  Google Scholar 

  4. Carrasco, M., Williams, P.E. & Yeshurun, Y. Covert attention increases spatial resolution with or without masks: support for signal enhancement. J. Vis. 2, 467–479 (2002).

    Article  Google Scholar 

  5. Carrasco, M., Ling, S. & Read, S. Attention alters appearance. Nat. Neurosci. 7, 308–313 (2004).

    Article  CAS  Google Scholar 

  6. Simons, D.J. & Rensink, R.A. Change blindness: past, present, and future. Trends Cogn. Sci. 9, 16–20 (2005).

    Article  Google Scholar 

  7. Treue, S. & Martinez Trujillo, J.C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  Google Scholar 

  8. McAdams, C.J. & Maunsell, J.H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  Google Scholar 

  9. Martinez-Trujillo, J.C. & Treue, S. Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr. Biol. 14, 744–751 (2004).

    Article  CAS  Google Scholar 

  10. Reynolds, J.H. & Chelazzi, L. Attentional modulation of visual processing. Annu. Rev. Neurosci. 27, 611–647 (2004).

    Article  CAS  Google Scholar 

  11. Treue, S. Neural correlates of attention in primate visual cortex. Trends Neurosci. 24, 295–300 (2001).

    Article  CAS  Google Scholar 

  12. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  13. Treue, S. & Maunsell, J.H. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J. Neurosci. 19, 7591–7602 (1999).

    Article  CAS  Google Scholar 

  14. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  Google Scholar 

  15. Maunsell, J.H.R. & McAdams, C.J. Effects of attention on the responsiveness and selectivity of individual neurons in visual cerebral cortex. in Visual Attention and Cortical Circuits (eds. Braun, J., Koch, C. & Davis, J.L.) Ch. 6 103–120 (MIT Press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  16. Reynolds, J.H. & Desimone, R. The role of neural mechanisms of attention in solving the binding problem. Neuron 24, 19–29 (1999).

    Article  CAS  Google Scholar 

  17. Salinas, E. & Abbott, L.F. A model of multiplicative neural responses in parietal cortex. Proc. Natl. Acad. Sci. USA 93, 11956–11961 (1996).

    Article  CAS  Google Scholar 

  18. Itti, L. & Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001).

    Article  CAS  Google Scholar 

  19. Everling, S., Tinsley, C., Gaffan, D. & Duncan, J. Filtering of neural signals by focused attention in the monkey prefrontal cortex. Nat. Neurosci. 5, 671–676 (2002).

    Article  CAS  Google Scholar 

  20. Intriligator, J. & Cavanagh, P. The spatial resolution of visual attention. Cognit. Psychol. 43, 171–216 (2001).

    Article  CAS  Google Scholar 

  21. Connor, C.E., Preddie, D.C., Gallant, J.L. & Van Essen, D.C. Spatial attention effects in macaque area V4. J. Neurosci. 17, 3201–3214 (1997).

    Article  CAS  Google Scholar 

  22. Suzuki, S. & Cavanagh, P. Focussed attention distorts visual space: an attentional repulsion effect. J. Exp. Psychol. Hum. Percept. Perform. 23, 443–463 (1997).

    Article  CAS  Google Scholar 

  23. LaBerge, D., Carlson, R.L., Williams, J.K. & Bunney, B.G. Shifting attention in visual space: tests of moving-spotlight models versus an activity-distribution model. J. Exp. Psychol. Hum. Percept. Perform. 23, 1380–1392 (1997).

    Article  CAS  Google Scholar 

  24. Müsseler, J., Stork, S. & Kerzel, D. Comparing mislocalizations with moving stimuli. The Fröhlich effect, the flash-lag effect and representational momentum. Vis. cogn. 9, 120–138 (2002).

    Article  Google Scholar 

  25. Tsal, Y. & Bareket, T. Effects of attention on localization of stimuli in the visual field. Psychon. Bull. Rev. 6, 292–296 (1999).

    Article  CAS  Google Scholar 

  26. Ben Hamed, S., Duhamel, J.R., Bremmer, F. & Graf, W. Visual receptive field modulation in the lateral intraprietal area during attentive fixation and free gaze. Cereb. Cortex 12, 234–245 (2002).

    Article  CAS  Google Scholar 

  27. Duhamel, J.R., Colby, C.L. & Goldberg, M.E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  Google Scholar 

  28. Tolias, A.S. et al. Eye movements modulate visual receptive fields of V4 neurons. Neuron 29, 757–767 (2001).

    Article  CAS  Google Scholar 

  29. Krekelberg, B., Kubischik, M., Hoffmann, K.P. & Bremmer, F. Neural correlates of visual localisation and perisaccadic mislocalisation. Neuron 37, 537–545 (2003).

    Article  CAS  Google Scholar 

  30. Britten, K.H. & Heuer, H.W. Spatial summation in the receptive fields of MT neurons. J. Neurosci. 19, 5074–5084 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tzvetanov and M. Husain for discussions in the course of this study; U. Grosshennig, D. Prüsse, K. Fahrner and R. Rode-Brockhausen for technical assistance; and D. Heller-Schmerold and S. Stuber for administrative assistance. This work was supported by the German Research Foundation (SFB 550 & GRK 289) and the Bernstein Center for Computational Neuroscience, Göttingen (Federal Ministry of Education and Research grant 01GQ0433).

Author information

Authors and Affiliations

Authors

Contributions

T.W. and S.T. conceived the experiment and performed the data analysis. T.W. and K.A.-E. performed the experiments. F.P. provided technical assistance and helped during the experiment. T.W. and S.T. wrote the paper.

Corresponding author

Correspondence to Thilo Womelsdorf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Receptive field profiles of an example cell as 2-dimensional surface plots. (PDF 41 kb)

Supplementary Fig. 2

Distribution of eye positions for trials where attention was directed onto one of the stimuli inside the receptive field in three example cells. (PDF 51 kb)

Supplementary Fig. 3

Spatial isotropy of changes in receptive field size with attention inside (to stimulus S1 or S2) versus attention outside the receptive field (to stimulus S3). (PDF 35 kb)

Supplementary Note (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Womelsdorf, T., Anton-Erxleben, K., Pieper, F. et al. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat Neurosci 9, 1156–1160 (2006). https://doi.org/10.1038/nn1748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing