Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations

Abstract

During nervous system development, a small number of conserved guidance cues and receptors regulate many axon trajectories. How could a limited number of cues and receptors regulate such complex projection patterns? One way is to modulate receptor function. Here we show that the Caenorhabditis elegans kinesin-related protein VAB-8L, which is necessary and sufficient for posterior cell and growth-cone migrations, directs these migrations by regulating the levels of the guidance receptor SAX-3 (also known as robo). Genetic experiments indicate that VAB-8L and the Rac guanine nucleotide exchange factor activity of UNC-73 (trio) increase the ability of the SLT-1 (slit) and UNC-6 (netrin) guidance pathways to promote posterior guidance. The observations of higher SAX-3 receptor abundance in animals with increasing amounts of VAB-8L, and of physical interactions between UNC-73 and both VAB-8L and the intracellular domain of the SAX-3, support a model whereby VAB-8L directs cell and growth-cone migrations by promoting localization of guidance receptors to the cell surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VAB-8L expression in the ALM neurons reroutes their processes posteriorly.
Figure 2: Mutations in genes encoding UNC-73, guidance cues and their receptors suppress VAB-8L–dependent ALM rerouting.
Figure 3: Posterior rerouting of ALM caused by excess SAX-3.
Figure 4: Loss or reduction of VAB-8, UNC-73, SAX-3, UNC-5 and UNC-6 perturb ALM cell migration.
Figure 5: VAB-8L level affects the SAX-3::GFP level in ALMs and BDUs of early embryos.
Figure 6: Interactions of UNC-73B with VAB-8L, SAX-3, UNC-5 and UNC-40 in the yeast two-hybrid analysis.

Similar content being viewed by others

References

  1. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  Google Scholar 

  2. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  Google Scholar 

  3. Chan, S.S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    Article  CAS  Google Scholar 

  4. Wadsworth, W.G., Bhatt, H. & Hedgecock, E.M. Neuroglia and pioneer neurons express UNC-6 to provide global and local netrin cues for guiding migrations in C. elegans. Neuron 16, 35–46 (1996).

    Article  CAS  Google Scholar 

  5. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  6. Kennedy, T.E., Serafini, T., de la Torre, J.R. & Tessier-Lavigne,, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    Article  CAS  Google Scholar 

  7. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    Article  CAS  Google Scholar 

  8. Kolodziej, P.A. et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    Article  CAS  Google Scholar 

  9. Mitchell, K.J. et al. Genetic analysis of Netrin genes in Drosophila: Netrins guide CNS commissural axons and peripheral motor axons. Neuron 17, 203–215 (1996).

    Article  CAS  Google Scholar 

  10. Hamelin, M., Zhou, Y., Su, M.W., Scott, I.M. & Culotti, J.G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993).

    Article  CAS  Google Scholar 

  11. Hedgecock, E.M., Culotti, J.G. & Hall, D.H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    Article  CAS  Google Scholar 

  12. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    Article  CAS  Google Scholar 

  13. Stein, E. & Tessier-Lavigne,, M. Hierarchical organization of guidance receptors: Silencing of netrin attraction by Slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    Article  CAS  Google Scholar 

  14. Sabatier, C. et al. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117, 157–169 (2004).

    Article  CAS  Google Scholar 

  15. Keleman, K. et al. Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110, 415–427 (2002).

    Article  CAS  Google Scholar 

  16. Keleman, K., Ribeiro, C. & Dickson, B.J. Comm function in commissural axon guidance: cell-autonomous sorting of Robo in vivo. Nat. Neurosci. 8, 156–163 (2005).

    Article  CAS  Google Scholar 

  17. Lyuksyutova, A.I. et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302, 1984–1988 (2003).

    Article  CAS  Google Scholar 

  18. Pan, C.-L. et al. Multiple Wnt and Frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Dev. Cell 10, 367–377 (2006).

    Article  CAS  Google Scholar 

  19. Wightman, B. et al. The C. elegans gene vab-8 guides posteriorly directed axon outgrowth and cell migration. Development 122, 671–682 (1996).

    CAS  PubMed  Google Scholar 

  20. Wolf, F.W., Hung, M.S., Wightman, B., Way, J. & Garriga, G. vab-8 is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity. Neuron 20, 655–666 (1998).

    Article  CAS  Google Scholar 

  21. Levy-Strumpf, N. & Culotti, J. VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nat. Neurosci. advance online publication, 21 January 2007 (doi:10.1038/nn1835).

  22. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370 (1981).

    Article  CAS  Google Scholar 

  23. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  24. Debant, A. et al. The multidomain protein Trio binds the LAR transmembrane tyrosine phosphatase, contains a protein kinase domain, and has separate rac-specific and rho-specific guanine nucleotide exchange factor domains. Proc. Natl. Acad. Sci. USA 93, 5466–5471 (1996).

    Article  CAS  Google Scholar 

  25. Newsome, T.P. et al. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 101, 283–294 (2000).

    Article  CAS  Google Scholar 

  26. Steven, R. et al. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785–795 (1998).

    Article  CAS  Google Scholar 

  27. Spencer, A.G., Orita, S., Malone, C.J. & Han, M.A. RHO GTPase-mediated pathway is required during P cell migration in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98, 13132–13137 (2001).

    Article  CAS  Google Scholar 

  28. Steven, R., Zhang, L., Culotti, J. & Pawson, T. The UNC-73/Trio RhoGEF-2 domain is required in separate isoforms for the regulation of pharynx pumping and normal neurotransmission in C. elegans. Genes Dev. 19, 2016–2029 (2005).

    Article  CAS  Google Scholar 

  29. Jantsch-Plunger, V. et al. CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391–1404 (2000).

    Article  CAS  Google Scholar 

  30. Hao, J.C. et al. C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32, 25–38 (2001).

    Article  CAS  Google Scholar 

  31. Zallen, J.A., Yi, B.A. & Bargmann, C.I. The conserved immunoglobulin superfamily member SAX-3/robo directs multiple aspects of axon guidance in C. elegans. Cell 92, 217–227 (1998).

    Article  CAS  Google Scholar 

  32. Merz, D.C., Zheng, H., Killeen, M.T., Krizus, A. & Culotti, J.G. Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo. Genetics 158, 1071–1080 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    Article  CAS  Google Scholar 

  34. Yu, T.W., Hao, J.C., Lim, W., Tessier-Lavigne, M. & Bargmann, C.I. Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nat. Neurosci. 5, 1147–1154 (2002).

    Article  CAS  Google Scholar 

  35. Forrester, W.C. & Garriga, G. Genes necessary for C. elegans cell and growth cone migrations. Development 124, 1831–1843 (1997).

    CAS  PubMed  Google Scholar 

  36. Manser, J. & Wood, W.B. Mutations affecting embryonic cell migrations in Caenorhabditis elegans. Dev. Genet. 11, 49–64 (1990).

    Article  CAS  Google Scholar 

  37. Fleming, T.C., Wolf, F.W. & Garriga, G. Sensitized genetic backgrounds reveal a role for C. elegans FGF EGL-17 as a repellent for migrating CAN neurons. Development 132, 4857–4867 (2005).

    Article  CAS  Google Scholar 

  38. Honigberg, L. & Kenyon, C. Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development 127, 4655–4668 (2000).

    CAS  PubMed  Google Scholar 

  39. Fan, X., Labrador, J.P., Hing, H. & Bashaw, G.J. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline. Neuron 40, 113–127 (2003).

    Article  CAS  Google Scholar 

  40. Hu, H. et al. Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion. Proc. Natl. Acad. Sci. USA 102, 4613–4618 (2005).

    Article  CAS  Google Scholar 

  41. Gitai, Z., Yu, T.W., Lundquist, E.A., Tessier-Lavigne, M. & Bargmann, C.I. The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM. Neuron 37, 53–65 (2003).

    Article  CAS  Google Scholar 

  42. Lundstrom, A. et al. Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev. 18, 2161–2171 (2004).

    Article  Google Scholar 

  43. Lamaze, C., Chuang, T.H., Terlecky, L.J., Bokoch, G.M. & Schmid, S.L. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382, 177–179 (1996).

    Article  CAS  Google Scholar 

  44. Jou, T.S. et al. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol. Biol. Cell 11, 287–304 (2000).

    Article  CAS  Google Scholar 

  45. Kiosses, W.B., Shattil, S.J., Pampori, N. & Schwartz, M.A. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat. Cell Biol. 3, 316–320 (2001).

    Article  CAS  Google Scholar 

  46. Forsthoefel, D.J., Liebl, E.C., Kolodziej, P.A. & Seeger, M.A. The Abelson tyrosine kinase, the Trio GEF and Enabled interact with the Netrin receptor Frazzled in Drosophila. Development 132, 1983–1994 (2005).

    Article  CAS  Google Scholar 

  47. Su, M. et al. Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development 127, 585–594 (2000).

    CAS  PubMed  Google Scholar 

  48. Ogura, K. & Goshima, Y. The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans. Development 133, 3441–3450 (2006).

    Article  CAS  Google Scholar 

  49. Lai, T. & Garriga, G. The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans. Development 131, 5991–6000 (2004).

    Article  CAS  Google Scholar 

  50. Georgiou, M. & Tear, G. Commissureless is required both in commissural neurones and midline cells for axon guidance across the midline. Development 129, 2947–2956 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Levy-Strumpf and J. Culotti for critical discussions, sharing of unpublished results and comments on the manuscript. This work was made possible by their observations on vab-8 and unc-40 interactions, and we are greatly indebted to them for sharing this information. We also thank C. Bargmann and R. Steven for helpful discussions and reagents; T. Lai for the Pmec-3::gfp and Pmec-7::gfp constructs; and the C. elegans Genetics Center for some of the strains used in this study; Y. Kohara for C. elegans EST clones; and P. Vanderzalm for comments on the manuscript. We are grateful to members of Garriga and Goshima labs for helpful suggestions. This work was supported by Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Grants-in-Aid for Scientific Research in a Priority Area from the Ministry of Education, Sports and Culture to K.O. and Y.G., by the Yokohama Foundation for Advancement of Medical Science to K.O., and by the US National Institutes of Health grant NS32057 to G.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Garriga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sax-3 functions in the ALM to promote ALM rerouting. (PDF 544 kb)

Supplementary Fig. 2

Physical interaction with UNC-73 in yeast two-hybrid analysis. (PDF 2539 kb)

Supplementary Fig. 3

Model for VAB-8L-dependent effects on ALM cell migration and process rerouting. (PDF 1366 kb)

Supplementary Table 1

VAB-8L-dependent ALM process rerouting. (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watari-Goshima, N., Ogura, Ki., Wolf, F. et al. C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations. Nat Neurosci 10, 169–176 (2007). https://doi.org/10.1038/nn1834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing