Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules

Abstract

To understand the functions of NIPA1, mutated in the neurodegenerative disease hereditary spastic paraplegia, and of ichthyin, mutated in autosomal recessive congenital ichthyosis, we have studied their Drosophila melanogaster ortholog, spichthyin (Spict). Spict is found on early endosomes. Loss of Spict leads to upregulation of bone morphogenetic protein (BMP) signaling and expansion of the neuromuscular junction. BMP signaling is also necessary for a normal microtubule cytoskeleton and axonal transport; analysis of loss- and gain-of-function phenotypes indicate that Spict may antagonize this function of BMP signaling. Spict interacts with BMP receptors and promotes their internalization from the plasma membrane, implying that it inhibits BMP signaling by regulating BMP receptor traffic. This is the first demonstration of a role for a hereditary spastic paraplegia protein or ichthyin family member in a specific signaling pathway, and implies disease mechanisms for hereditary spastic paraplegia that involve dependence of the microtubule cytoskeleton on BMP signaling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NIPA1 homologs and Drosophila spict gene.
Figure 2: Drosophila spict expression and localization.
Figure 3: spict null mutants cause BMP-dependent NMJ overgrowth.
Figure 4: Spict regulates microtubules by inhibiting BMP signaling.
Figure 5: Spict overexpression and tkv mutants impair fast axonal transport.
Figure 6: Spict overexpression and reduction of BMP signaling impairs axonal transport by disrupting the microtubule cytoskeleton.
Figure 7: Involvement of Spict in BMP signaling.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Stokin, G.B. & Goldstein, L.S.B. Axonal transport and Alzheimer's disease. Annu. Rev. Biochem. 75, 607–627 (2006).

    Article  CAS  Google Scholar 

  2. Reid, E. Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias. J. Med. Genet. 40, 81–86 (2003).

    Article  CAS  Google Scholar 

  3. Fink, J.K. Hereditary spastic paraplegia. Curr. Neurol. Neurosci. Rep. 6, 65–76 (2006).

    Article  CAS  Google Scholar 

  4. Zeitlmann, L., Sirim, P., Kremmer, E. & Kolanus, W. Cloning of ACP33 as a novel intracellular ligand of CD4. J. Biol. Chem. 276, 9123–9132 (2001).

    Article  CAS  Google Scholar 

  5. Simpson, M.A. et al. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am. J. Hum. Genet. 73, 1147–1156 (2003).

    Article  CAS  Google Scholar 

  6. Bakowska, J.C., Jenkins, R., Pendleton, J. & Blackstone, C. The Troyer syndrome (SPG20) protein spartin interacts with Eps15. Biochem. Biophys. Res. Commun. 334, 1042–1048 (2005).

    Article  CAS  Google Scholar 

  7. Reid, E. et al. The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum. Mol. Genet. 14, 19–38 (2005).

    Article  CAS  Google Scholar 

  8. Mannan, A.U. et al. ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. Am. J. Hum. Genet. 79, 351–357 (2006).

    Article  CAS  Google Scholar 

  9. Otomo, A. et al. ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum. Mol. Genet. 12, 1671–1687 (2003).

    Article  CAS  Google Scholar 

  10. Rainier, S., Chai, J.H., Tokarz, D., Nicholls, R.D. & Fink, J.K. NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am. J. Hum. Genet. 73, 967–971 (2003).

    Article  CAS  Google Scholar 

  11. Chen, S. et al. Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. Hum. Mutat. 25, 135–141 (2005).

    Article  CAS  Google Scholar 

  12. Reed, J.A. et al. A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia. Neurogenetics 6, 79–84 (2005).

    Article  CAS  Google Scholar 

  13. Kaneko, S. et al. Novel SPG6 mutation p.A100T in a Japanese family with autosomal dominant form of hereditary spastic paraplegia. Mov. Disord. 21, 1531–1533 (2006).

    Article  Google Scholar 

  14. Chai, J.H. et al. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman Syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am. J. Hum. Genet. 73, 898–925 (2003).

    Article  CAS  Google Scholar 

  15. Lefèvre, C. et al. Mutations in ichthyin a new gene on chromosome 5q33 in a new form of autosomal recessive congenital ichthyosis. Hum. Mol. Genet. 13, 2473–2482 (2004).

    Article  Google Scholar 

  16. DiGiovanna, J.J. & Robinson-Bostom, L. Ichthyosis: etiology, diagnosis, and management. Am. J. Clin. Dermatol. 4, 81–95 (2003).

    Article  Google Scholar 

  17. Aberle, H. et al. Wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    Article  CAS  Google Scholar 

  18. Marqués, G. et al. The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33, 529–543 (2002).

    Article  Google Scholar 

  19. McCabe, B.D. et al. The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39, 241–254 (2003).

    Article  CAS  Google Scholar 

  20. McCabe, B.D. et al. Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41, 891–905 (2004).

    Article  CAS  Google Scholar 

  21. Eaton, B.A. & Davis, G.W. LIM Kinase1 controls synaptic stability downstream of the type II BMP receptor. Neuron 47, 695–708 (2005).

    Article  CAS  Google Scholar 

  22. Sweeney, S.T. & Davis, G.W. Unrestricted synaptic growth in spinster—a late endosomal protein implicated in TGF-β-mediated synaptic growth regulation. Neuron 36, 403–416 (2002).

    Article  CAS  Google Scholar 

  23. Wan, H.I. et al. Highwire regulates synaptic growth in Drosophila. Neuron 26, 313–329 (2000).

    Article  CAS  Google Scholar 

  24. Collins, C.A., Wairkar, Y.P., Johnson, S.L. & DiAntonio, A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51, 57–69 (2006).

    Article  CAS  Google Scholar 

  25. Sherwood, N.T., Sun, Q., Xue, M., Zhang, B. & Zinn, K. Drosophila spastin regulates synaptic microtubule networks and is required for normal motor function. PLoS Biol. 2, e429 (2004).

    Article  Google Scholar 

  26. Trotta, N., Orso, G., Rossetto, M.G., Daga, A. & Broadie, K. The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Curr. Biol. 14, 1135–1147 (2004).

    Article  CAS  Google Scholar 

  27. Webster, D.R. & Borisy, G.G. Microtubules are acetylated in domains that turn over slowly. J. Cell Sci. 92, 57–65 (1989).

    PubMed  Google Scholar 

  28. Vadlamudi, R.K. et al. p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol. Cell. Biol. 25, 3726–3736 (2005).

    Article  CAS  Google Scholar 

  29. Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G.W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26, 371–382 (2000).

    Article  CAS  Google Scholar 

  30. Goold, R.G., Owen, R. & Gordon-Weeks, P.R. Glycogen synthase kinase 3β phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones. J. Cell Sci. 112, 3373–3384 (1999).

    CAS  PubMed  Google Scholar 

  31. O'Connor, M.B., Umulis, D., Othmer, H. & Blair, S.S. Shaping BMP morphogen gradients in the Drosophila embryo and pupal wings. Development 133, 183–193 (2006).

    Article  CAS  Google Scholar 

  32. Ralston, A. & Blair, S.S. Long-range Dpp signaling is regulated to restrict BMP signaling to a crossvein competent zone. Dev. Biol. 280, 187–200 (2005).

    Article  CAS  Google Scholar 

  33. Dudu, V. et al. Postsynaptic Mad signaling at the Drosophila neuromuscular junction. Curr. Biol. 16, 625–635 (2006).

    Article  CAS  Google Scholar 

  34. Jékely, G. & Rørth, P. Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep. 4, 1163–1168 (2003).

    Article  Google Scholar 

  35. Thompson, B.J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

    Article  CAS  Google Scholar 

  36. Lu, H. & Bilder, D. Endocytic control of epithelial polarity and proliferation in Drosophila. Nat. Cell Biol. 7, 1232–1242 (2005).

    Article  Google Scholar 

  37. Eaton, B.A., Fetter, R.D. & Davis, G.W. Dynactin is necessary for synapse stabilization. Neuron 34, 729–741 (2002).

    Article  CAS  Google Scholar 

  38. Gibson, M.C. & Perrimon, N. Extrusion and death of DPP/BMP-compromised epithelial cells in the developing Drosophila wing. Science 307, 1785–1789 (2005).

    Article  CAS  Google Scholar 

  39. Li, A.G., Wang, D., Feng, X.-H. & Wang,, X.-J. Latent TGFβ1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J. 23, 1770–1781 (2004).

    Article  CAS  Google Scholar 

  40. Casso, D., Ramirez-Weber, F.A. & Kornberg, T.B. GFP-tagged balancer chromosomes for Drosophila melanogaster. Mech. Dev. 91, 451–454 (2000).

    Article  CAS  Google Scholar 

  41. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  42. Brummel, T. et al. The Drosophila Activin receptor Baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development. Genes Dev. 13, 98–111 (1999).

    Article  CAS  Google Scholar 

  43. Littleton, J.T., Bellen, H.J. & Perin, M.S. Expression of synaptotagmin in Drosophila reveals transport and localization of synaptic vesicles to the synapse. Development 118, 1077–1088 (1993).

    CAS  PubMed  Google Scholar 

  44. Persson, U. et al. The L45 loop in type I receptors for TGF-β family members is a critical determinant in specifying Smad isoform activation. FEBS Lett. 434, 83–87 (1998).

    Article  CAS  Google Scholar 

  45. Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J. & Wu, C.-F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. [A] 175, 179–191 (1994).

    Article  CAS  Google Scholar 

  46. Wucherpfennig, T., Wilsch-Brauninger, M. & Gonzalez-Gaitan,, M. Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J. Cell Biol. 161, 609–624 (2003).

    Article  CAS  Google Scholar 

  47. Krämer, H. & Phistry, M. Mutations in the Drosophila hook gene inhibit endocytosis of the boss transmembrane ligand into multivesicular bodies. J. Cell Biol. 133, 1205–1215 (1996).

    Article  Google Scholar 

  48. Parnas, D., Haghighi, A.P., Fetter, R.D., Kim, S.W. & Goodman, C.S. Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32, 415–424 (2001).

    Article  CAS  Google Scholar 

  49. Zinsmaier, K.E. et al. A cysteine-string protein is expressed in retina and brain of Drosophila. J. Neurogenet. 7, 15–29 (1990).

    Article  CAS  Google Scholar 

  50. Chenna, R. et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Aberle, D. Coulson, J. Drummond, V. Korolchuk, S. Sweeney and the Bloomington and Szeged Drosophila Stock Centers for fly stocks, S. Eaton, G. Marqués, M. O'Connor, J. Rocha, K. Wang and F. Wirtz-Peitz for DNA constructs, M. González-Gaitán, H. Krämer, T. Littleton, S. Sweeney, P. ten Dijke, A. Tolkovsky and the Developmental Studies Hybridoma Bank for antibodies, and L. Masuda-Nakagawa, D. Rubinsztein and O'Kane lab members for helpful discussions. X.W. was supported by scholarships from Cambridge Overseas Trust and a UK Government Overseas Research Studentship award. H.T.H.T. was supported by Tom Wahlig Stiftung, Croucher Foundation, Cambridge Overseas Trust and a UK Government Overseas Research Studentship award. E.R. is a Wellcome Trust Advanced Clinical Fellow. C.J.O'K. was supported by a Research Development Fellowship from the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Contributions

X.W. performed most experiments, analyzed data and wrote the manuscript; W.R.S. performed crosses to generate a null mutant; H.T.H.T. designed S2 redistribution experiments; E.R. designed S2 redistribution experiments and supervised the project; C.J.O'K. analyzed data, wrote the manuscript and supervised the project.

Corresponding author

Correspondence to Cahir J O'Kane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Localization of tagged Spict. (PDF 393 kb)

Supplementary Fig. 2

Topology of Spict in S2 cells. (PDF 394 kb)

Supplementary Fig. 3

spict null mutants cause synaptic overgrowth at the NMJ. (PDF 563 kb)

Supplementary Fig. 4

BMP signaling is required for synaptic overgrowth in spictmut, and for microtubule stability and axonal transport. (PDF 409 kb)

Supplementary Fig. 5

Involvement of Spict in BMP signaling. (PDF 523 kb)

Supplementary Video 1

Time-lapse analysis of Syt-eGFP vesicles in a segmental nerve of a wild type larva carrying OK6-GAL4. Movies are played back in real time (2 frames per second). Scale bar is 10 μm. Anterograde movement is to the right, retrograde to the left. Both anterograde and retrograde movements can be observed. (MOV 84 kb)

Supplementary Video 2

Time-lapse analysis of Syt-eGFP puncta in a segmental nerve of a tkv (tkv7/tkv16713) larva carrying OK6-GAL4. Movies are played back in real time (2 frames per second). Scale bar is 10 μm. Anterograde movement is to the right, retrograde to the left. Large nonmotile bright aggregates are observed within the nerve. (MOV 82 kb)

Supplementary Video 3

Time-lapse analysis of Syt-eGFP vesicles in a segmental nerve of a spictmut larva carrying OK6-GAL4. Movies are played back in real time (2 frames per second). Scale bar is 10 μm. Anterograde movement is to the right, retrograde to the left. Both anterograde and retrograde movements can be observed. (MOV 132 kb)

Supplementary Video 4

Time-lapse analysis of Syt-eGFP puncta in a segmental nerve of a larva overexpressing Spict under control of OK6-GAL4. Movies are played back in real time (2 frames per second). Scale bar is 10 μm. Anterograde movement is to the right, retrograde to the left. Large nonmotile bright aggregates are observed within the nerve. (MOV 221 kb)

Supplementary Methods (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Shaw, W., Tsang, H. et al. Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nat Neurosci 10, 177–185 (2007). https://doi.org/10.1038/nn1841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing