Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections

Abstract

The functions of cortical areas depend on their inputs and outputs, but the detailed circuits made by long-range projections are unknown. We show that the light-gated channel channelrhodopsin-2 (ChR2) is delivered to axons in pyramidal neurons in vivo. In brain slices from ChR2-expressing mice, photostimulation of ChR2-positive axons can be transduced reliably into single action potentials. Combining photostimulation with whole-cell recordings of synaptic currents makes it possible to map circuits between presynaptic neurons, defined by ChR2 expression, and postsynaptic neurons, defined by targeted patching. We applied this technique, ChR2-assisted circuit mapping (CRACM), to map long-range callosal projections from layer (L) 2/3 of the somatosensory cortex. L2/3 axons connect with neurons in L5, L2/3 and L6, but not L4, in both ipsilateral and contralateral cortex. In both hemispheres the L2/3-to-L5 projection is stronger than the L2/3-to-L2/3 projection. Our results suggest that laminar specificity may be identical for local and long-range cortical projections.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photostimulation of ChR2-positive neocortical L2/3 pyramidal neurons.
Figure 2: Perisomatic and axonal photostimulation of ChR2-positive L2/3 pyramidal neurons.
Figure 3: Analysis of the synaptic targets of L2/3 pyramidal cells in the contralateral and ipsilateral barrel cortex.
Figure 4: Comparison of L2/3-to-L2/3 and L2/3-to-L5 projections.

Similar content being viewed by others

References

  1. Douglas, R.J. & Martin, K.A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    Article  CAS  Google Scholar 

  2. Binzegger, T., Douglas, R.J. & Martin, K.A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004).

    Article  CAS  Google Scholar 

  3. Stepanyants, A., Tamas, G. & Chklovskii, D.B. Class-specific features of neuronal wiring. Neuron 43, 251–259 (2004).

    Article  CAS  Google Scholar 

  4. Gilbert, C.D. Microcircuitry of the visual cortex. Annu. Rev. Neurosci. 6, 217–247 (1983).

    Article  CAS  Google Scholar 

  5. Shepherd, G.M.G., Stepanyants, A., Bureau, I., Chklovskii, D.B. & Svoboda, K. Geometric and functional organization of cortical circuits. Nat. Neurosci. 8, 782–790 (2005).

    Article  CAS  Google Scholar 

  6. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000).

    Article  CAS  Google Scholar 

  7. Thomson, A.M., West, D.C., Wang, Y. & Bannister, A.P. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12, 936–953 (2002).

    Article  Google Scholar 

  8. Thomson, A.M. & Bannister, A.P. Interlaminar connections in the neocortex. Cereb. Cortex 13, 5–14 (2003).

    Article  Google Scholar 

  9. Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. (Lond.) 551, 139–153 (2003).

    Article  CAS  Google Scholar 

  10. Katz, L.C. & Dalva, M.B. Scanning laser photostimulation: a new approach for analyzing brain circuits. J. Neurosci. Methods 54, 205–218 (1994).

    Article  CAS  Google Scholar 

  11. Dantzker, J.L. & Callaway, E.M. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat. Neurosci. 3, 701–707 (2000).

    Article  CAS  Google Scholar 

  12. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  Google Scholar 

  13. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    Article  CAS  Google Scholar 

  14. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  15. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  16. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  Google Scholar 

  17. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    Article  CAS  Google Scholar 

  18. Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54, 85–94 (2006).

    Article  CAS  Google Scholar 

  19. Zhang, Y.P. & Oertner, T.G. Optical induction of synaptic plasticity using a light-sensitive channel. Nat. Methods 4, 139–141 (2006).

    Article  Google Scholar 

  20. Nagel, G. et al. Channelrhodopsins: directly light-gated cation channels. Biochem. Soc. Trans. 33, 863–866 (2005).

    Article  CAS  Google Scholar 

  21. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  Google Scholar 

  22. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  23. Hatanaka, Y., Hisanaga, S., Heizmann, C.W. & Murakami, F. Distinct migratory behavior of early- and late-born neurons derived from the cortical ventricular zone. J. Comp. Neurol. 479, 1–14 (2004).

    Article  Google Scholar 

  24. Zhang, F., Wang, L.P., Boyden, E.S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  Google Scholar 

  25. Gazzaniga, M.S. Forty-five years of split-brain research and still going strong. Nat. Rev. Neurosci. 6, 653–659 (2005).

    Article  CAS  Google Scholar 

  26. Wise, S.P. & Jones, E.G. The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J. Comp. Neurol. 168, 313–343 (1976).

    Article  CAS  Google Scholar 

  27. Ivy, G.O., Akers, R.M. & Killackey, H.P. Differential distribution of callosal projection neurons in the neonatal and adult rat. Brain Res. 173, 532–537 (1979).

    Article  CAS  Google Scholar 

  28. Olavarria, J., Van Sluyters, R.C. & Killackey, H.P. Evidence for the complementary organization of callosal and thalamic connections within rat somatosensory cortex. Brain Res. 291, 364–368 (1984).

    Article  CAS  Google Scholar 

  29. Connors, B.W. & Gutnick, M.J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    Article  CAS  Google Scholar 

  30. Karayannis, T., Huerta-Ocampo, I. & Capogna, M. GABAergic and pyramidal neurons of deep cortical layers directly receive and differently integrate callosal input. Cereb. Cortex published online 7 July 2006 (doi:10.1093/cercor/bhl035).

    Article  Google Scholar 

  31. Zarrinpar, A. & Callaway, E.M. Local connections to specific types of layer 6 neurons in the rat visual cortex. J. Neurophysiol. 95, 1751–1761 (2006).

    Article  Google Scholar 

  32. Vogt, B.A. & Gorman, A.L. Responses of cortical neurons to stimulation of corpus callosum in vitro. J. Neurophysiol. 48, 1257–1273 (1982).

    Article  CAS  Google Scholar 

  33. Kumar, S.S. & Huguenard, J.R. Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex. J. Neurophysiol. 86, 2973–2985 (2001).

    Article  CAS  Google Scholar 

  34. White, E.L. & Czeiger, D. Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: emphasis on intrinsic connections. J. Comp. Neurol. 303, 233–244 (1991).

    Article  CAS  Google Scholar 

  35. Czeiger, D. & White, E.L. Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex. J. Comp. Neurol. 330, 502–513 (1993).

    Article  CAS  Google Scholar 

  36. Raastad, M., Storm, J.F. & Andersen, P. Putative single quantum and single fibre excitatory postsynaptic currents show similar amplitude range and variability in rat hippocampal slices. Eur. J. Neurosci. 4, 113–117 (1992).

    Article  Google Scholar 

  37. Bureau, I., von Saint Paul, F. & Svoboda, K. Interdigitated paralemniscal and lemniscal pathways in the mouse barrel cortex. PLoS Biol. 4, e382 (2006).

    Article  Google Scholar 

  38. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  39. Ruthazer, E.S. & Stryker, M.P. The role of activity in the development of long-range horizontal connections in area 17 of the ferret. J. Neurosci. 16, 7253–7269 (1996).

    Article  CAS  Google Scholar 

  40. Innocenti, G.M. & Price, D.J. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 6, 955–965 (2005).

    Article  CAS  Google Scholar 

  41. Dantzker, J.L. & Callaway, E.M. The development of local, layer-specific visual cortical axons in the absence of extrinsic influences and intrinsic activity. J. Neurosci. 18, 4145–4154 (1998).

    Article  CAS  Google Scholar 

  42. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404, 567–573 (2000).

    Article  CAS  Google Scholar 

  43. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  44. Gray, N.W., Weimer, R.M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    Article  Google Scholar 

  45. Shepherd, G.M., Pologruto, T.A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38, 277–289 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for discussion, D. Chklovskii, E. Chiappe, G. Shepherd and J. Magee for comments on the manuscript, and T. O'Connor for software development. This work was supported by the Howard Hughes Medical Institute, the US National Institute of Health and the Swiss National Science Foundation (D.H.).

Author information

Authors and Affiliations

Authors

Contributions

L.P. and K.S. conceived and designed the experiments, analyzed the data and wrote the manuscript. L.P., D.H. and A.S. conducted the experiments. K.S. provided reagents, analysis tools and financial support.

Corresponding author

Correspondence to Karel Svoboda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

ChR2 photoexcitation in L2/3 neurons. (PDF 141 kb)

Supplementary Fig. 2

Excitation of a ChR2-positive L2/3 cell at different laser powers. (PDF 81 kb)

Supplementary Fig. 3

The number of excited axons increases with laser power. (PDF 122 kb)

Supplementary Fig. 4

ChR2-negative cells do not respond to repeated laser photostimulation. (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petreanu, L., Huber, D., Sobczyk, A. et al. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat Neurosci 10, 663–668 (2007). https://doi.org/10.1038/nn1891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing