Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner

Abstract

Attention can selectively enhance neuronal responses and exclude external noise, but the neuronal computations that underlie these effects remain unknown. At the neuronal level, noise exclusion might result in altered spatial integration properties. We tested this proposal by recording neuronal activity and length tuning in neurons of the primary visual cortex of the macaque when attention was directed toward or away from stimuli presented in each neuron's classical receptive field. For cells with central-parafoveal receptive fields, attention reduced spatial integration, as demonstrated by a reduction in preferred stimulus length and in the size of the spatial summation area. Conversely, in cells that represented more peripheral locations, attention increased spatial integration by increasing the cell's summation area. This previously unknown dichotomy between central and peripheral vision could support accurate analysis of attended foveal objects and target selection for impending eye movements to peripheral objects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the main experimental task.
Figure 2: Effect of attention on length tuning for individual cells.
Figure 3: Effect of attention on preferred length and on DOG summation area and summation gain.
Figure 4: Population response as a function of bar length.
Figure 5: Quantitative comparison of attentional modulation as a function of bar-length and recording location.

References

  1. Haenny, P.E. & Schiller, P.H. State dependent activity in monkey visual cortex. I Single cell activity in V1 and V4 on visual tasks. Exp. Brain Res. 69, 225–244 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Roelfsema, P.R., Lamme, V.A. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376–381 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and neuronal performance. Science 240, 338–340 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Treue, S. & Maunsell, J.H.R. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Lu, Z.L., Lesmes, L.A. & Dosher, B.A. Spatial attention excludes external noise at the target location. J. Vis. 2, 312–323 (2002).

    Article  PubMed  Google Scholar 

  7. Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 72–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Treue, S. & Martinez-Trujillo, J.C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. McAdams, C.J. & Maunsell, J.H.R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reynolds, J.H., Pasternak, T. & Desimone, R. Attention increases sensitivity of V4 neurons. Neuron 26, 703–714 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Womelsdorf, T., Anton-Erxleben, K., Pieper, F. & Treue, S. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nat. Neurosci. 9, 1156–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Zenger, B., Braun, J. & Koch, C. Attentional effects on contrast detection in the presence of surround masks. Vision Res. 40, 3717–3724 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Ito, M., Westheimer, G. & Gilbert, C.D. Attention and perceptual learning modulate contextual influences on visual perception. Neuron 20, 1191–1197 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. DeAngelis, G.C., Freeman, R.D. & Ohzawa, I. Length and width tuning of neurons in the cat's primary visual cortex. J. Neurophysiol. 71, 347–374 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Angelucci, A., Levitt, J.B. & Lund, J.S. Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog. Brain Res. 136, 373–388 (2002).

    Article  PubMed  Google Scholar 

  17. Sceniak, M.P., Ringach, D.L., Hawken, M.J. & Shapley, R. Contrast's effect on spatial summation by macaque V1 neurons. Nat. Neurosci. 2, 733–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Carandini, M., Heeger, D.J. & Movshon, J.A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thiele, A., Distler, C. & Hoffmann, K.P. Decision-related activity in the macaque dorsal visual pathway. Eur. J. Neurosci. 11, 2044–2058 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Cavanaugh, J.R., Bair, W. & Movshon, J.A. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. J. Neurophysiol. 88, 2530–2546 (2002).

    Article  PubMed  Google Scholar 

  21. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Shapley, R., Hawken, M. & Ringach, D.L. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron 38, 689–699 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Angelucci, A. et al. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22, 8633–8646 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferster, D., Chung, S. & Wheat, H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Kapadia, M.K., Westheimer, G. & Gilbert, C.D. Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc. Natl. Acad. Sci. USA 96, 12073–12078 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carrasco, M., Ling, S. & Read, S. Attention alters appearance. Nat. Neurosci. 7, 308–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Williford, T. & Maunsell, J.H. Effects of spatial attention on contrast response functions in macaque area V4. J. Neurophysiol. 96, 40–54 (2006).

    Article  PubMed  Google Scholar 

  29. Buracas, G.T. & Boynton, G.M. The effect of spatial attention on contrast response functions in human visual cortex. J. Neurosci. 27, 93–97 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ito, M. & Gilbert, C.D. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22, 593–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Xing, J. & Heeger, D.J. Center-surround interactions in foveal and peripheral vision. Vision Res. 40, 3065–3072 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Freeman, E., Sagi, D. & Driver, J. Lateral interactions between targets and flankers in low-level vision depend on attention to the flankers. Nat. Neurosci. 4, 1032–1036 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Li, W., Piech, V. & Gilbert, C.D. Perceptual learning and top-down influences in primary visual cortex. Nat. Neurosci. 7, 651–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Everitt, B.J. & Robbins, T.W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 48, 649–684 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Roberts, M.J. et al. Acetylcholine dynamically controls spatial integration in marmoset primary visual cortex. J. Neurophysiol. 93, 2062–2072 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Roelfsema, P.R. & van Ooyen, A. Attention-gated reinforcement learning of internal representations for classification. Neural Comput. 17, 2176–2214 (2005).

    Article  PubMed  Google Scholar 

  37. Thiele, A., Delicato, L.S., Roberts, M.J. & Gieselmann, M.A. A novel electrode-pipette design for simultaneous recording of extracellular spikes and iontophoretic drug application in awake behaving monkeys. J. Neurosci. Methods 158, 207–211 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thiele, A., Distler, C., Korbmacher, H. & Hoffmann, K-P. Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area. Proc. Natl. Acad. Sci. USA 101, 9810–9815 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ringach, D. & Shapley, R. Reverse correlation in neurophysiology. Cognit. Sci. 28, 147–166 (2004).

    Article  Google Scholar 

  40. Sceniak, M.P., Hawken, M.J. & Shapley, R. Visual spatial characterization of macaque V1 neurons. J. Neurophysiol. 85, 1873–1887 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Dayan for discussions and comments on the paper. The staff of the Comparative Biology Centre (University of Newcastle upon Tyne) provided excellent technical support. The work was supported by the BBSRC (BBS/B/09325), the Wellcome Trust (070380/Z/03/Z), and the MRC (G0100407; G78/7853).

Author information

Authors and Affiliations

Authors

Contributions

M.R. and A.T. conceived the experiments and performed data analysis. M.R., L.S.D., J.H., M.A.G. and A.T. performed the experiments. M.R., L.S.D. and A.T. wrote the paper.

Corresponding author

Correspondence to Alexander Thiele.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–5 (PDF 535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M., Delicato, L., Herrero, J. et al. Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner. Nat Neurosci 10, 1483–1491 (2007). https://doi.org/10.1038/nn1967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing