Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons

Abstract

In perceptual tasks, subjects attempt to rely on their most informative cues. Such strategic choices should be reflected in the types of sensory neurons that are used. We investigated this in a binocular-disparity discrimination task. Using psychophysical reverse-correlation, also known as image classification, we identified the perceptual strategies of two macaques (Macaca mulatta). Correlations between reported disparity signs and disparity noise samples for each trial yielded detection 'filters'. Filter amplitude was greater at near disparities than at far disparities, indicating that the subjects relied more on near disparities. Recordings from both macaques' disparity-selective V2 neurons showed a correlation between neuronal responses and perceptual judgment in near-preferring, but not far-preferring, units, mirroring the psychophysically measured strategy. After one monkey learned to weight near and far disparities equally, activity in its far-preferring neurons correlated with choice. Thus, the pattern of correlations between neuronal activity and perceptual reports indicates how subjects use their neuronal signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods.
Figure 2: The psychophysical kernels for one experimental condition.
Figure 3: Psychophysical kernels for all experimental conditions.
Figure 4: Distribution of choice probabilities in V2, separated for near- and far-preferring neurons.
Figure 5: Distribution of choice probabilities separated by monkeys and preferred disparity sign.
Figure 6: Choice probability depends on preferred disparity.

Similar content being viewed by others

References

  1. Uka, T., Tanabe, S., Watanabe, M. & Fujita, I. Neural correlates of fine depth discrimination in monkey inferior temporal cortex. J. Neurosci. 25, 10796–10802 (2005).

    Article  CAS  Google Scholar 

  2. Celebrini, S. & Newsome, W.T. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci. 14, 4109–4124 (1994).

    Article  CAS  Google Scholar 

  3. Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  Google Scholar 

  4. Dodd, J.V., Krug, K., Cumming, B.G. & Parker, A.J. Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. J. Neurosci. 21, 4809–4821 (2001).

    Article  CAS  Google Scholar 

  5. Uka, T. & DeAngelis, G.C. Contribution of area MT to stereoscopic depth perception: choice-related response modulations reflect task strategy. Neuron 42, 297–310 (2004).

    Article  CAS  Google Scholar 

  6. Parker, A.J. & Newsome, W.T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  Google Scholar 

  7. Palmer, C., Cheng, S.Y. & Seidemann, E. Linking neuronal and behavioral performance in a reaction-time visual detection task. J. Neurosci. 27, 8122–8137 (2007).

    Article  CAS  Google Scholar 

  8. Parker, A.J., Krug, K. & Cumming, B.G. Neuronal activity and its links with the perception of multi-stable figures. Phil. Trans. R. Soc. Lond. B 357, 1053–1062 (2002).

    Article  Google Scholar 

  9. Purushothaman, G. & Bradley, D.C. Neural population code for fine perceptual decisions in area MT. Nat. Neurosci. 8, 99–106 (2005).

    Article  CAS  Google Scholar 

  10. Neri, P. & Levi, D.M. Receptive versus perceptive fields from the reverse-correlation viewpoint. Vision Res. 46, 2465–2474 (2006).

    Article  Google Scholar 

  11. Neri, P., Parker, A.J. & Blakemore, C. Probing the human stereoscopic system with reverse correlation. Nature 401, 695–698 (1999).

    Article  CAS  Google Scholar 

  12. Ahumada, A.J. Perceptual classification images from Vernier acuity masked by noise. Perception 26, 18 (1996).

    Google Scholar 

  13. Uka, T. & DeAngelis, G.C. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci. 23, 3515–3530 (2003).

    Article  CAS  Google Scholar 

  14. Nienborg, H. & Cumming, B.G. Macaque V2 neurons, but not V1 neurons, show choice-related activity. J. Neurosci. 26, 9567–9578 (2006).

    Article  CAS  Google Scholar 

  15. Read, J.C. & Cumming, B.G. Ocular dominance predicts neither strength nor class of disparity selectivity with random-dot stimuli in primate V1. J. Neurophysiol. 91, 1271–1281 (2004).

    Article  Google Scholar 

  16. Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  17. Shadlen, M.N., Britten, K.H., Newsome, W.T. & Movshon, J.A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996).

    Article  CAS  Google Scholar 

  18. Norcia, A.M. & Tyler, C.W. Temporal frequency limits for stereoscopic apparent motion processes. Vision Res. 24, 395–401 (1984).

    Article  CAS  Google Scholar 

  19. Nienborg, H., Bridge, H., Parker, A.J. & Cumming, B.G. Neuronal computation of disparity in V1 limits temporal resolution for detecting disparity modulation. J. Neurosci. 25, 10207–10219 (2005).

    Article  CAS  Google Scholar 

  20. Broadbent, D.E. Perception and Communication (Pergamon Press, London, 1958).

    Book  Google Scholar 

  21. Duncan, J. The locus of interference in the perception of simultaneous stimuli. Psychol. Rev. 87, 272–300 (1980).

    Article  CAS  Google Scholar 

  22. Deutsch, J.A. & Deutsch, D. Some theoretical considerations. Psychol. Rev. 70, 80–90 (1963).

    Article  CAS  Google Scholar 

  23. Treue, S. & Martinez Trujillo, J.C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  Google Scholar 

  24. McAdams, C.J. & Reid, R.C. Attention modulates the responses of simple cells in monkey primary visual cortex. J. Neurosci. 25, 11023–11033 (2005).

    Article  CAS  Google Scholar 

  25. Haenny, P.E., Maunsell, J.H. & Schiller, P.H. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp. Brain Res. 69, 245–259 (1988).

    Article  CAS  Google Scholar 

  26. Roelfsema, P.R., Lamme, V.A. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376–381 (1998).

    Article  CAS  Google Scholar 

  27. Luck, S.J., Chelazzi, L., Hillyard, S.A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2 and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  28. Krug, K. A common neuronal code for perceptual processes in visual cortex? Comparing choice and attentional correlates in V5/MT. Phil. Trans. R. Soc. Lond. B 359, 929–941 (2004).

    Article  Google Scholar 

  29. DeAngelis, G.C. & Newsome, W.T. Perceptual “read-out” of conjoined direction and disparity maps in extrastriate area MT. PLoS Biol. 2, E77 (2004).

    Article  Google Scholar 

  30. Gold, J.I. & Shadlen, M.N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    Article  Google Scholar 

  31. Williams, Z.M., Elfar, J.C., Eskandar, E.N., Toth, L.J. & Assad, J.A. Parietal activity and the perceived direction of ambiguous apparent motion. Nat. Neurosci. 6, 616–623 (2003).

    Article  CAS  Google Scholar 

  32. Cook, E.P. & Maunsell, J.H. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat. Neurosci. 5, 985–994 (2002).

    Article  CAS  Google Scholar 

  33. Maunsell, J.H. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).

    Article  CAS  Google Scholar 

  34. Judge, S.J., Richmond, B.J. & Chu, F.C. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

    Article  CAS  Google Scholar 

  35. Davison, A.C. & Hinkley, D.V. Bootstrap Methods and their Application (Cambridge University Press, 1997).

    Book  Google Scholar 

Download references

Acknowledgements

We thank C. Hillman, M. Szarowicz, C. Silver and D. Parker for excellent animal care. This research was supported by the Intramural Research Program of the US National Institutes of Health, National Eye Institute.

Author information

Authors and Affiliations

Authors

Contributions

H.N. conducted the experiments and the data analysis and wrote the paper. B.G.C. supervised the project.

Corresponding author

Correspondence to Hendrikje Nienborg.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Disccusion, Methods and Results (PDF 324 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nienborg, H., Cumming, B. Psychophysically measured task strategy for disparity discrimination is reflected in V2 neurons. Nat Neurosci 10, 1608–1614 (2007). https://doi.org/10.1038/nn1991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing