Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent and specific influences of early acoustic environments on primary auditory cortex

Abstract

This study demonstrates that the adult form of 'tonotopic maps' of sound frequency in the rat primary auditory cortex (A1) arises from parallel developmental processes involving two cortical zones: the progressive differentiation and refinement of selectively tone-responsive receptive fields within an initially broadly-tuned posterior zone, and the progressive loss of tone-evoked, short-latency response over an initially large, very broadly tuned anterior zone. The formation of tonotopic maps in A1 was specifically influenced by a rat pup's early acoustic environments. Exposure to pulsed tones resulted in accelerated emergence and an expansion of A1 representations of those specific tone frequencies, as well as a deteriorated tonotopicity and broader-than-normal receptive fields. Thus, auditory experiences during early postnatal development are important in shaping the functional development of auditory cortical representations of specific acoustic environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tonotopic organization in the auditory cortex of rats determined at different postnatal ages.
Figure 2: Normal progressive development of the rat auditory cortex.
Figure 3: Effects of early monotone exposure on the development of response selectivity and tonotopy.
Figure 4: Development of the auditory cortex in monotone exposed rats.
Figure 5: Persistent effects of early monotone exposure.
Figure 6: Summary of effects induced by early monotone exposure on the adult primary auditory cortex.

Similar content being viewed by others

References

  1. Romand, R. Modification of tonotopic representation in the auditory system during development. Prog. Neurobiol. 51, 1–17 (1997).

    Article  CAS  Google Scholar 

  2. Rauschecker, J. P. Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci. 22, 74–80 (1999).

    Article  CAS  Google Scholar 

  3. Clopton, B. M. & Winfield, J. A. Effect of early exposure to patterned sound on unit activity in rat inferior colliculus. J. Neurophysiol. 39, 1081–1089 (1976).

    Article  CAS  Google Scholar 

  4. Sanes, D. H. & Constantine-Paton, M. Altered activity patterns during development reduce neural tuning. Science 16, 1183–1185 (1983).

    Article  Google Scholar 

  5. Gao, E. & Suga, N. Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc. Natl. Acad. Sci. USA 95, 12663–12670 (1998).

    Article  CAS  Google Scholar 

  6. Brugge, J. F., Reale, R. A. & Wilson, C. E. Sensitivity of auditory cortical neurons of kittens to monaural and binaural high frequency sound. Hear. Res. 34, 127–140 (1988).

    Article  CAS  Google Scholar 

  7. Eggermont, J. J. Maturational aspects of periodicity coding in cat primary auditory cortex. Hear. Res. 57, 45–56 (1991).

    Article  CAS  Google Scholar 

  8. Heil, P. & Scheich, H. Spatial representation of frequency-modulated signals in the tonotopically organized auditory cortex analogue of the chick. J. Comp. Neurol. 322, 548–565 (1992).

    Article  CAS  Google Scholar 

  9. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  10. Fox, K. The role of excitatory amino acid transmission in development and plasticity of SI barrel cortex. Prog. Brain Res. 108, 219–234 (1996).

    Article  CAS  Google Scholar 

  11. Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  Google Scholar 

  12. Weinberger, N. M. Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu. Rev. Neurosci. 18, 129 (1995).

    Article  CAS  Google Scholar 

  13. Stanton, S. G. & Harrison, R. V. Abnormal cochleotopic organization in the auditory cortex of cats reared in a frequency augmented environment. Audit. Neurosci. 2, 97–107 (1996).

    Google Scholar 

  14. Rajan, R., Irvine, D. R., Wise, L. Z. & Heil, P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 338, 17–49 (1993).

    Article  CAS  Google Scholar 

  15. Harrison, R. V., Stanton, S. G., Ibrahim, D., Nagasawa, A. & Mount, R. J. Neonatal cochlear hearing loss results in developmental abnormalities of the central auditory pathways. Acta. Otolaryngol. 113, 296–302 (1993).

    Article  CAS  Google Scholar 

  16. Ahissar, E. et al. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257, 1412–1415 (1992).

    Article  CAS  Google Scholar 

  17. Recanzone, G. H., Schreiner, C. E. & Merzenich, M. M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  Google Scholar 

  18. Kilgard, M. P. & Merzenich, M. M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).

    Article  CAS  Google Scholar 

  19. Pantev, C. et al. Increased auditory cortical representation in musicians. Nature 392, 811–814 (1998).

    Article  CAS  Google Scholar 

  20. Gao, E. & Suga, N. Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system. Proc. Natl. Acad. Sci. USA 97, 8081–8086 (2000).

    Article  CAS  Google Scholar 

  21. Frost, D. O. Sensory processing by novel, experimentally induced cross-modal circuits. Ann. NY Acad. Sci. 608, 92–112 (1990).

    Article  CAS  Google Scholar 

  22. Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature 404, 841–847 (2000).

    Article  CAS  Google Scholar 

  23. von Melchner, L., Pallas, S. L. & Sur, M. Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404, 871–876 (2000).

    Article  CAS  Google Scholar 

  24. Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N. & Lindblom, B. Linguistic experience alters phonetic perception in infants by 6 months of age. Science 255, 606–608 (1992).

    Article  CAS  Google Scholar 

  25. Tallal, P. et al. Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271, 81–84 (1996).

    Article  CAS  Google Scholar 

  26. Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    Article  CAS  Google Scholar 

  27. Kelly, J. B. & Sally, S. L. Organization of auditory cortex in the albino rat: sound frequency. J. Neurophysiol. 59, 1627–1638 (1988).

    Article  Google Scholar 

  28. Kilgard, M. P. & Merzenich, M. M. Distributed representation of spectral and temporal information in rat primary auditory cortex. Hear. Res. 134, 16–28 (1999).

    Article  CAS  Google Scholar 

  29. Friauf, E. Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunohistochemistry. Eur. J. Neurosci. 4, 798–808 (1992).

    Article  Google Scholar 

  30. Blatchley, B. J., Cooper, W. A. & Coleman, J. R. Development of auditory brainstem response to tone pip stimuli in the rat. Brain Res. 429, 75–84 (1987).

    Article  CAS  Google Scholar 

  31. Eggermont, J. J. Differential maturation rates for response parameters in cat primary auditory cortex. Audit. Neurosci. 2, 309–327 (1996).

    Google Scholar 

  32. Horikawa, J., Ito, S., Hosokawa, Y., Homma, T. & Murata, K. Tonotopic representation in the rat auditory cortex. Proc. Japan Acad. 64B, 260–263 (1988).

    Article  Google Scholar 

  33. Zilles, K. in The Cerebral Cortex of the Rat (eds. Kolb, B. & Tees, R. C.) 77–112 (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  34. Puel, J. L. & Uziel, A. Correlative development of cochlear action potential sensitivity, latency, and frequency selectivity. Brain Res. 15, 179–88 (1987).

    Article  Google Scholar 

  35. Sanes, D. H. & Constantine-Paton, M. The sharpening of frequency tuning curves requires patterned activity during development in the mouse, Mus musculus. J. Neurosci. 5, 1152–1166 (1985).

    Article  CAS  Google Scholar 

  36. Poon, P. W. & Chen, X. Postnatal exposure to tones alters the tuning characteristics of inferior collicular neurons in the rat. Brain Res. 585, 391–394 (1992).

    Article  CAS  Google Scholar 

  37. King, A. J., Hutchings, M. E., Moore, D. R. & Blakemore, C. Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332, 73–76 (1988).

    Article  CAS  Google Scholar 

  38. Knudsen, E. I. Capacity for plasticity in the adult owl auditory system expanded by juvenile experience. Science 279, 1531–1533 (1998).

    Article  CAS  Google Scholar 

  39. Condon, C. D. & Weinberger, N. M. Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav. Neurosci. 105, 416–430 (1991).

    Article  CAS  Google Scholar 

  40. Weliky, M. & Katz, L. C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).

    Article  CAS  Google Scholar 

  41. Schmidt, J. T. & Buzzard, M. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. J. Neurobiol. 24, 384–399 (1993).

    Article  CAS  Google Scholar 

  42. Feldman, D. E., Nicoll, R. A. & Malenka, R. C. Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J. Neurobiol. 41, 92–101 (1999).

    Article  CAS  Google Scholar 

  43. Zhang, L. I., Tao, H. W. & Poo, M. Visual input induces long-term potentiation of developing retinotectal synapses. Nat. Neurosci. 3, 708–715 (2000).

    Article  CAS  Google Scholar 

  44. Zheng, C., Feinstein, P., Bozza, T., Rodriguez, I. & Mombaerts, P. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 26, 81–91 (2000).

    Article  CAS  Google Scholar 

  45. Lin, D. M. et al. Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity. Neuron 26, 69–80 (2000).

    Article  CAS  Google Scholar 

  46. Crair, M. C., Gillespie, D. C. & Stryker, M. P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  47. Crowley, J. C. & Katz, L. C. Early development of ocular dominance columns. Science 290, 1321–1324 (2000).

    Article  CAS  Google Scholar 

  48. Penn, A. A., Riquelme, P. A., Feller, M. B. & Shatz, C. J. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998).

    Article  CAS  Google Scholar 

  49. Penn, A. A. & Shatz, C. J. Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development. Pediatr. Res. 45, 447–458 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Blake, T. Moallem, H. Tao and M. Poo for discussion. This work was supported by NIH grants NS-10414 and NS-34835 and by grants from the Sandler and MIND Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li I. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Bao, S. & Merzenich, M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4, 1123–1130 (2001). https://doi.org/10.1038/nn745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing