Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synapsin dispersion and reclustering during synaptic activity

An Erratum to this article was published on 01 February 2002

Abstract

Presynaptic modulation of synaptic transmission provides an important basis for control of synaptic function. The synapsins, a family of highly conserved proteins associated with synaptic vesicles, have long been implicated in the regulation of neurotransmitter release. However, direct physiological measurements of the molecular mechanisms have been lacking. Here we show that in living hippocampal terminals, green fluorescent protein (GFP)-labeled synapsin Ia dissociates from synaptic vesicles, disperses into axons during action potential (AP) firing, and reclusters to synapses after the cessation of synaptic activity. Using various mutated forms of synapsin Ia that prevent phosphorylation at specific sites, we performed simultaneous FM 4-64 measurements of vesicle pool mobilization along with synapsin dispersion kinetics. These studies indicate that the rate of synapsin dispersion is controlled by phosphorylation, which in turn controls the kinetics of vesicle pool turnover. Thus synapsin acts as a phosphorylation-state-dependent regulator of synaptic vesicle mobilization, and hence, neurotransmitter release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synapsin disperses from synaptic vesicles during activity.
Figure 2: Kinetics of GFP-synapsin Ia dispersion and recovery.
Figure 3: Comparison of the dynamics of GFP-synapsin Ia dispersion and recycling vesicle turnover.
Figure 4: Synapsin Ia is a phosphorylation-dependent negative regulator of vesicle pool turnover.
Figure 5: Dispersion kinetics of GFP-synapsin Ia mutants regulate the efficiency of vesicle pool turnover in wild-type rat neurons.
Figure 6: Dispersion kinetics of GFP-synapsin Ia mutants regulate the efficiency of vesicle pool turnover in synapsin I/II−/− neurons.

Similar content being viewed by others

References

  1. Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785 (1993).

    Article  CAS  Google Scholar 

  2. Hilfiker, S. et al. Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat. Neurosci. 1, 29–35 (1998).

    Article  CAS  Google Scholar 

  3. Hosaka, M. & Sudhof, T. C. Synapsin III, a novel synapsin with an unusual regulation by Ca2+. J. Biol. Chem. 273, 13371–13374 (1998).

    Article  CAS  Google Scholar 

  4. Kao, H. T. et al. A third member of the synapsin gene family. Proc. Natl. Acad. Sci. USA 95, 4667–4672 (1998).

    Article  CAS  Google Scholar 

  5. Kao, H. T. et al. Molecular evolution of the synapsin gene family. J. Exp. Zool. 285, 360–377 (1999).

    Article  CAS  Google Scholar 

  6. Sudhof, T. C. et al. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245, 1474–1480 (1989).

    Article  CAS  Google Scholar 

  7. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374–1388 (1983).

    Article  CAS  Google Scholar 

  8. De Camilli, P., Harris, S. M. Jr., Huttner, W. B. & Greengard, P. Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J. Cell Biol. 96, 1355–1373 (1983).

    Article  CAS  Google Scholar 

  9. Mandell, J. W. et al. Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 5, 19–33 (1990).

    Article  CAS  Google Scholar 

  10. Mandell, J. W., Czernik, A. J., De Camilli, P., Greengard, P. & Townes-Anderson, E. Differential expression of synapsins I and II among rat retinal synapses. J. Neurosci. 12, 1736–1749 (1992).

    Article  CAS  Google Scholar 

  11. Bahler, M. & Greengard, P. Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature 326, 704–707 (1987).

    Article  CAS  Google Scholar 

  12. Bahler, M., Benfenati, F., Valtorta, F., Czernik, A. J. & Greengard, P. Characterization of synapsin I fragments produced by cysteine-specific cleavage: a study of their interactions with F-actin. J. Cell Biol. 108, 1841–1849 (1989).

    Article  CAS  Google Scholar 

  13. Benfenati, F., Valtorta, F., Bahler, M. & Greengard, P. Synapsin I, a neuron-specific phosphoprotein interacting with small synaptic vesicles and F-actin. Cell Biol. Int. Rep. 13, 1007–1021 (1989).

    Article  CAS  Google Scholar 

  14. Benfenati, F., Bahler, M., Jahn, R. & Greengard, P. Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J. Cell Biol. 108, 1863–1872 (1989).

    Article  CAS  Google Scholar 

  15. Benfenati, F., Greengard, P., Brunner, J. & Bahler, M. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J. Cell Biol. 108, 1851–1862 (1989).

    Article  CAS  Google Scholar 

  16. Benfenati, F., Valtorta, F., Chieregatti, E. & Greengard, P. Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 8, 377–386 (1992).

    Article  CAS  Google Scholar 

  17. Benfenati, F. et al. Interactions of synapsin I with phospholipids: possible role in synaptic vesicle clustering and in the maintenance of bilayer structures. J. Cell Biol. 123, 1845–1855 (1993).

    Article  CAS  Google Scholar 

  18. Ceccaldi, P. E. et al. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J. Cell Biol. 128, 905–912 (1995).

    Article  CAS  Google Scholar 

  19. Chilcote, T. J., Siow, Y. L., Schaeffer, E., Greengard, P. & Thiel, G. Synapsin IIa bundles actin filaments. J. Neurochem. 63, 1568–1571 (1994).

    Article  CAS  Google Scholar 

  20. Greengard, P., Browning, M. D., McGuinness, T. L. & Llinas, R. Synapsin I, a phosphoprotein associated with synaptic vesicles: possible role in regulation of neurotransmitter release. Adv. Exp. Med. Biol. 221, 135–153 (1987).

    Article  CAS  Google Scholar 

  21. Hosaka, M., Hammer, R. E. & Sudhof, T. C. A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24, 377–387 (1999).

    Article  CAS  Google Scholar 

  22. Thiel, G., Sudhof, T. C. & Greengard, P. Synapsin II. Mapping of a domain in the NH2-terminal region which binds to small synaptic vesicles. J. Biol. Chem. 265, 16527–16533 (1990).

    CAS  PubMed  Google Scholar 

  23. Schiebler, W., Jahn, R., Doucet, J. P., Rothlein, J. & Greengard, P. Characterization of synapsin I binding to small synaptic vesicles. J. Biol. Chem. 261, 8383–8390 (1986).

    CAS  PubMed  Google Scholar 

  24. De Camilli, P., Benfenati, F., Valtorta, F. & Greengard, P. The synapsins. Annu. Rev. Cell Biol. 6, 433–460 (1990).

    Article  CAS  Google Scholar 

  25. Li, L. et al. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc. Natl. Acad. Sci. USA 92, 9235–9239 (1995).

    Article  CAS  Google Scholar 

  26. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).

    Article  CAS  Google Scholar 

  27. Rosahl, T. W. et al. Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75, 661–670 (1993).

    Article  CAS  Google Scholar 

  28. Stefani, G. et al. Kinetic analysis of the phosphorylation-dependent interactions of synapsin I with rat brain synaptic vesicles. J. Physiol. (Lond.) 504, 501–515 (1997).

    Article  CAS  Google Scholar 

  29. Sihra, T. S., Wang, J. K., Gorelick, F. S. & Greengard, P. Translocation of synapsin I in response to depolarization of isolated nerve terminals. Proc. Natl. Acad. Sci. USA 86, 8108–8112 (1989).

    Article  CAS  Google Scholar 

  30. Torri, T. F., Bossi, M., Fesce, R., Greengard, P. & Valtorta, F. Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation. Neuron 9, 1143–1153 (1992).

    Article  Google Scholar 

  31. Henkel, A. W. & Betz, W. J. Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J. Neurosci. 15, 8246–8258 (1995).

    Article  CAS  Google Scholar 

  32. Sankaranarayanan, S. & Ryan, T. A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat. Cell Biol. 2, 197–204 (2000).

    Article  CAS  Google Scholar 

  33. Czernik, A. J., Pang, D. T. & Greengard, P. Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc. Natl. Acad. Sci. USA 84, 7518–7522 (1987).

    Article  CAS  Google Scholar 

  34. Llinas, R., McGuinness, T. L., Leonard, C. S., Sugimori, M. & Greengard, P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc. Natl. Acad. Sci. USA 82, 3035–3039 (1985).

    Article  CAS  Google Scholar 

  35. Llinas, R., Gruner, J. A., Sugimori, M., McGuinness, T. L. & Greengard, P. Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J. Physiol. (Lond.) 436, 257–282 (1991).

    Article  CAS  Google Scholar 

  36. Hosaka, M. & Sudhof, T. C. Homo- and heterodimerization of synapsins. J. Biol. Chem. 274, 16747–16753 (1999).

    Article  CAS  Google Scholar 

  37. Tanaka, H. et al. Molecular modification of N-cadherin in response to synaptic activity. Neuron 25, 93–107 (2000).

    Article  CAS  Google Scholar 

  38. Ryan, T. A., Li, L., Chin, L. S., Greengard, P. & Smith, S. J. Synaptic vesicle recycling in synapsin I knock-out mice. J. Cell Biol. 134, 1219–1227 (1996).

    Article  CAS  Google Scholar 

  39. Esser, L. et al. Synapsin I is structurally similar to ATP-utilizing enzymes. EMBO J. 17, 977–984 (1998).

    Article  CAS  Google Scholar 

  40. Hosaka, M. & Sudhof, T. C. Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. J. Biol. Chem. 273, 1425–1429 (1998).

    Article  CAS  Google Scholar 

  41. Ferreira, A. et al. Distinct roles of synapsin I and synapsin II during neuronal development. Mol. Med. 4, 22–28 (1998).

    Article  CAS  Google Scholar 

  42. Ryan, T. A. Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J. Neurosci. 19, 1317–1323 (1999).

    Article  CAS  Google Scholar 

  43. Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron 19, 625–634 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank R. Scheller for providing the GFP-VAMP construct, W. Yan for technical assistance and members of the Ryan and Greengard labs for discussions. This work was supported by grants from the NIH to T.A.R. (NS24692 and GM61925-01) and P.G. (MH39327). T.A.R. is an Alfred P. Sloan Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. Ryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, P., Greengard, P. & Ryan, T. Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4, 1187–1193 (2001). https://doi.org/10.1038/nn756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing