Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake

Abstract

Induction and expression of long-term potentiation (LTP) in area CA1 of the hippocampus require the coordinated regulation of several cellular processes. We found that LTP in area CA1 was associated with an N-methyl-d-aspartate (NMDA) receptor–dependent increase in glutamate uptake. The increase in glutamate uptake was inhibited by either removal of Na+ or addition of d,l-threo-β-hydroxyaspartate. Dihydrokainate (DHK), a specific inhibitor of the glial glutamate transporter GLT-1, did not block the increase in glutamate uptake. LTP was also associated with a translocation of the EAAC1 glutamate transporter from the cytosol to the plasma membrane. Contextual fear conditioning increased the maximum rate (Vmax) of glutamate uptake and membrane expression of EAAC1 in area CA1. These results indicate that regulation of glutamate uptake may be important for maintaining the level of synaptic strength during long-term changes in synaptic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HFS increased glutamate uptake in area CA1 of hippocampus.
Figure 2: Changes in expression of glutamate transporters in a plasma membrane fraction from area CA1 30 min after induction of LTP.
Figure 3: HFS produced translocation of EAAC1 from the cytosol to the membrane.
Figure 4: Contextual fear conditioning increased glutamate uptake in area CA1 in vivo.
Figure 5: Contextual fear conditioning increased neuronal glutamate transporters in area CA1.

Similar content being viewed by others

References

  1. Diamond, J. S. & Jahr, C. E. Transporters buffer synaptically released glutamate on a submillisecond time scale. J. Neurosci. 17, 4672–4687 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grewer, C., Watzke, N., Wiessner, M. & Rauen, T. Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc. Natl. Acad. Sci. USA 97, 9706–9711 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mennerick, S. & Zorumski, C. F. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature 368, 59–62 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Tong, G. & Jahr, C. E. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13, 1195–1203 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699–1702 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Overstreet, L. S., Kinney, G. A., Liu, Y. B., Billups, D. & Slater, N. T. Glutamate transporters contribute to the time course of synaptic transmission in cerebellar granule cells. J. Neurosci. 19, 9663–9673 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Turecek, R. & Trussell, L. O. Control of synaptic depression by glutamate transporters. J. Neurosci. 20, 2054–2063 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brasnjo, G. & Otis, T. S. Neuronal glutamate transporters control activation of postsynaptic metabotropic glutamate receptors and influence cerebellar long-term depression. Neuron 31, 607–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sorra, K. E. & Harris, K. M. Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1. J. Neurosci. 13, 3736–3748 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lehre, K. P. & Danbolt, N. C. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18, 8751–8757 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rothstein, J. D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Rothstein, J. D. et al. Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. He, Y., Janssen, W. G., Rothstein, J. D. & Morrison, J. H. Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus. J. Comp. Neurol. 418, 255–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Arriza, J. L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14, 5559–5569 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Torp, R., Hoover, F., Danbolt, N. C., Storm-Mathisen, J. & Ottersen, O. P. Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis. Anat. Embryol. (Berl.) 195, 317–326 (1997).

    Article  CAS  Google Scholar 

  18. Gundersen, V., Danbolt, N. C., Ottersen, O. P. & Storm-Mathisen, J. Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous d-aspartate. Neuroscience 57, 97–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Bergles, D. E. & Jahr, C. E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci. 18, 7709–7716 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng, K. T. et al. Complex roles of glutamate in the Gibbs-Ng model of one-trial aversive learning in the new-born chick. Neurosci. Biobehav. Rev. 21, 45–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Levenson, J. et al. Long-term regulation of neuronal high-affinity glutamate and glutamine uptake in Aplysia. Proc. Natl. Acad. Sci. USA 97, 12858–12863 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maleszka, R., Helliwell, P. & Kucharski, R. Pharmacological interference with glutamate re-uptake impairs long-term memory in the honeybee, Apis mellifera. Behav. Brain Res. 115, 49–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Harris, E. W., Ganong, A. H. & Cotman, C. W. Long-term potentiation in the hippocampus involves activation of N-methyl-d-aspartate receptors. Brain Res. 323, 132–137 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Frey, U., Krug, M., Reymann, K. G. & Matthies, H. Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452, 57–65 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Malenka, R. C., Ayoub, G. S. & Nicoll, R. A. Phorbol esters enhance transmitter release in rat hippocampal slices. Brain Res. 403, 198–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Malinow, R., Schulman, H. & Tsien, R. W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Dowd, L. A. & Robinson, M. B. Rapid stimulation of EAAC1-mediated Na+-dependent L-glutamate transport activity in C6 glioma cells by phorbol ester. J. Neurochem. 67, 508–516 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Furuta, A., Martin, L. J., Lin, C. L., Dykes-Hoberg, M. & Rothstein, J. D. Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4. Neuroscience 81, 1031–1042 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Davis, K. E. et al. Multiple signaling pathways regulate cell surface expression and activity of the excitatory amino acid carrier 1 subtype of Glu transporter in C6 glioma. J. Neurosci. 18, 2475–2485 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atkins, C. M., Selcher, J. C., Petraitis, J. J., Trzaskos, J. M. & Sweatt, J. D. The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602–609 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Impey, S. et al. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1, 595–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Huerta, P. T., Sun, L. D., Wilson, M. A. & Tonegawa, S. Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron 25, 473–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Rampon, C. et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3, 238–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Aggleton, J. P., Vann, S. D., Oswald, C. J. & Good, M. Identifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: a simple problem with a complex answer. Hippocampus 10, 466–474 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Casado, M. et al. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J. Biol. Chem. 268, 27313–27317 (1993).

    CAS  PubMed  Google Scholar 

  37. Jackson, M. et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410, 89–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Lin, C. I. et al. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 410, 84–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Diamond, J. S., Bergles, D. E. & Jahr, C. E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21, 425–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Luscher, C., Malenka, R. C. & Nicoll, R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron 21, 435–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Asztely, F., Erdemli, G. & Kullmann, D. M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Min, M. Y., Rusakov, D. A. & Kullmann, D. M. Activation of AMPA, kainate, and metabotropic receptors at hippocampal mossy fiber synapses: role of glutamate diffusion. Neuron 21, 561–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Rusakov, D. A. & Kullmann, D. M. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J. Neurosci. 18, 3158–3170 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abdul-Ghani, A. S. et al. Anti-epileptogenic and anticonvulsant activity of l-2-amino-4- phosphonobutyrate, a presynaptic glutamate receptor agonist. Brain Res. 755, 202–212 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Cochilla, A. J. & Alford, S. Metabotropic glutamate receptor-mediated control of neurotransmitter release. Neuron 20, 1007–1016 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Dube, G. R. & Marshall, K. C. Activity-dependent activation of presynaptic metabotropic glutamate receptors in locus coeruleus. J. Neurophysiol. 83, 1141–1149 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Otis, T. S., Wu, Y. C. & Trussell, L. O. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J. Neurosci. 16, 1634–1644 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferkany, J. & Coyle, J. T. Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. J. Neurosci. Res. 16, 491–503 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.H. Byrne, D. Baxter and E. Antzoulatos for discussions and critical reviews. This work was supported by NIH grants MH48147 (to J.D.S.), NS28462 (to A.E.) and NS42156 (to A.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Eskin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levenson, J., Weeber, E., Selcher, J. et al. Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci 5, 155–161 (2002). https://doi.org/10.1038/nn791

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn791

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing