Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ventricle-directed migration in the developing cerebral cortex

Abstract

It is believed that postmitotic neurons migrate away from their sites of origin in the germinal zones to populate distant targets. Contrary to this notion, we found, using time-lapse imaging of brain slices, populations of neurons positioned at various levels of the developing neocortex that migrate towards the cortical ventricular zone. After a pause in this proliferative zone, they migrate radially in the direction of the pial surface to take up positions in the cortical plate. Immunohistochemical analysis together with tracer labeling in brain slices showed that cells showing ventricle-directed migration in the developing cortex are GABAergic interneurons originating in the ganglionic eminence in the ventral telencephalon. We speculate that combinations of chemoattractant and chemorepellent molecules are involved in this ventricle-directed migration and that interneurons may seek the cortical ventricular zone to receive layer information.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-lapse imaging illustrating the typical patterns of cell movement in an acute mouse cortical slice labeled with Oregon Green BAPTA 488.
Figure 2: Time-lapse sequence of a cell undergoing ventricle-directed migration in an acute mouse cortical slice labeled with Oregon Green BAPTA 488.
Figure 3: Characterization of cells with ventricle-directed processes in fixed brain sections.
Figure 4: Cells that undergo ventricle-directed migration arise in ventral telencephalon.
Figure 5: Characterization of labeled cells with ventricle-directed features in vitro.
Figure 6: Cells with ventricle-directed features are postmitotic.
Figure 7: Neurons with ventricle-directed features are present at all stages of corticogenesis.

Similar content being viewed by others

References

  1. Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. Rakic, P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J. 54 Suppl 1, 25–40 (1978).

    PubMed  Google Scholar 

  3. Angevine, J. B., Jr. & Sidman, R. L. Autoradiographic study of the cell migration during histogenesis of cerebral cortex in the mouse. Nature 192, 766–768 (1961).

    Article  PubMed  Google Scholar 

  4. Berry, M. & Rogers, A. W. The migration of neuroblasts in the developing cerebral cortex. J. Anat. 99, 691–709 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rakic, P., Stensas, L. J., Sayre, E. & Sidman, R. L. Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain. Nature 250, 31–34 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Hatten, M. E. Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. O'Rourke, N. A., Dailey, M. E., Smith, S. J. & McConnell, S. K. Diverse migratory pathways in the developing cerebral cortex. Science 258, 299–302 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Tan, S. S. & Breen, S. Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature 362, 638–640 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Reid, C. B., Liang, I. & Walsh, C. Systematic widespread clonal organization in cerebral cortex. Neuron 15, 299–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Mione, M. C., Cavanagh, J. F., Harris, B. & Parnavelas, J. G. Cell fate specification and symmetrical/asymmetrical divisions in the developing cerebral cortex. J. Neurosci. 17, 2018–2029 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parnavelas, J. G. The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23, 126–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Tan, S. S. et al. Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21, 295–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. De Carlos, J. A., Lopez-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Tamamaki, N., Fujimori, K. E. & Takauji, R. Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci. 17, 8313–8323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wichterle, H., Turnbull, D. H., Nery, S., Fishell, G., & Alvarez-Buylla, A. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128, 3759–3771 (2001).

    CAS  PubMed  Google Scholar 

  18. Anderson, S., Mione, M., Yun, K., & Rubenstein, J. L. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Denaxa, M., Chan, C.-H., Schachner, M., Parnavelas, J. G. & Karagogeos, D. The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development 128, 4635–4644 (2001).

    CAS  PubMed  Google Scholar 

  20. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. McConnell, S. K. & Kaznowski, C. E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. L. & Pearlman, A. L. Two modes of radial migration in early development of the cerebral cortex. Nature Neurosci. 4, 143–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Edmondson, J. C. & Hatten, M. E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci. 7, 1928–1934 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Komuro, H. & Rakic, P. Dynamics of granule cell migration: a confocal microscopic study in acute cerebellar slice preparations. J. Neurosci. 15, 1110–1120 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Anderson, S. A., Marin, O., Horn, C., Jennings, K. & Rubenstein, J. L. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128, 353–363 (2001).

    CAS  PubMed  Google Scholar 

  26. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. O'Rourke, N. A., Chenn, A. & McConnell, S. K. Postmitotic neurons migrate tangentially in the cortical ventricular zone. Development 124, 997–1005 (1997).

    CAS  PubMed  Google Scholar 

  28. Neyt, C., Welch, M., Langston, A., Kohtz, J. & Fishell, G. A short-range signal restricts cell movement between telencephalic proliferative zones. J. Neurosci. 17, 9194–9203 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rakic, P. Principles of neural cell migration. Experientia 46, 882–891 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Gray, G. E., Leber, S. M. & Sanes, J. R. Migratory patterns of clonally related cells in the developing central nervous system. Experientia 46, 929–940 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Miller, M. W. Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. Dev. Brain Res. 23, 187–192 (1985).

    Article  CAS  Google Scholar 

  32. Cavanagh, M. E. & Parnavelas, J. G. Development of somatostatin immunoreactive neurons in the rat occipital cortex: a combined immunocytochemical–autoradiographic study. J. Comp. Neurol. 268, 1–12 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by grants by the Wellcome Trust to B.N. and J.G.P. (grant number 050325) and by the US National Eye Institute to R.O.L.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Parnavelas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadarajah, B., Alifragis, P., Wong, R. et al. Ventricle-directed migration in the developing cerebral cortex. Nat Neurosci 5, 218–224 (2002). https://doi.org/10.1038/nn813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing