Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Critical periods for experience-dependent synaptic scaling in visual cortex

This article has been updated

Abstract

The mechanisms underlying experience-dependent plasticity and refinement of central circuits are not yet fully understood. A non-Hebbian form of synaptic plasticity, which scales synaptic strengths up or down to stabilize firing rates, has recently been discovered in cultured neuronal networks. Here we demonstrate the existence of a similar mechanism in the intact rodent visual cortex. The frequency of miniature excitatory postsynaptic currents (mEPSCs) in principal neurons increased steeply between post-natal days 12 and 23. There was a concomitant decrease in mEPSC amplitude, which was prevented by rearing rats in complete darkness from 12 days of age. In addition, as little as two days of monocular deprivation scaled up mEPSC amplitude in a layer- and age-dependent manner. These data indicate that mEPSC amplitudes can be globally scaled up or down as a function of development and sensory experience, and suggest that synaptic scaling may be involved in the activity-dependent refinement of cortical connectivity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layer 4 and 2/3 mEPSC amplitudes decreased while mEPSC frequencies increased during the second and third postnatal weeks.
Figure 2: Dark rearing prevented the developmental reduction in mEPSC amplitude in layer 4.
Figure 3: Monocular deprivation (MD) via intraocular TTX injections between P14 and P16 increased average quantal amplitude in layer 4.
Figure 4: Monocular deprivation between P21 and P23 did not affect mEPSCs from layer 4.
Figure 5: Sensitivity to monocular deprivation was shifted developmentally in layer 2/3 relative to layer 4.

Similar content being viewed by others

Change history

  • 27 June 2002

    Online figure was updated with note and PDF was ammended with note. Issue PDF contains "corrected 27 June 2002 (details online)"

Notes

  1. NOTE: A corrupted electronic file led to an error in the AOP version of this paper. Parts of the axis lines and the figure labeling were missing in Fig. 5. This mistake has been corrected in the HTML version and will appear correctly in print. The PDF version available online has been appended.

References

  1. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  2. Goodman, C.S. & Shatz, C.J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72, 77–98 (1993).

    Article  Google Scholar 

  3. Tessier-Lavigne, M. & Goodman, C.S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  Google Scholar 

  4. Crowley, J.C. & Katz, L.C. Development of ocular dominance columns in the absence of retinal input. Nat. Neurosci. 2, 1125–1130 (1999).

    Article  CAS  Google Scholar 

  5. Feller, M.B. Spontaneous correlated activity in developing neural circuits. Neuron 22, 653–656 (1999).

    Article  CAS  Google Scholar 

  6. McCormick, D.A. Spontaneous activity: signal or noise? Science 285, 541–543 (1999).

    Article  CAS  Google Scholar 

  7. Hubel, D.H. & Wiesel, T.N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  8. Daw, N.W., Fox, K., Sato, H. & Czepita, D. Critical period for monocular deprivation in the cat visual cortex. J. Neurophysiol. 67, 197–202 (1992).

    Article  CAS  Google Scholar 

  9. Fox, K. A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J. Neurosci. 12, 1826–1838 (1992).

    Article  CAS  Google Scholar 

  10. Stern, E.A., Maravall, M. & Svoboda, K. Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron 31, 305–315 (2001).

    Article  CAS  Google Scholar 

  11. Shatz, C.J. Impulse activity and the patterning of connections during CNS development. Neuron 5, 745–756 (1990).

    Article  CAS  Google Scholar 

  12. Malenka, R.C. & Nicoll, R.A. NMDA receptor–dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16, 521–527 (1993).

    Article  CAS  Google Scholar 

  13. Bear, M.F. & Malenka, R.C. Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389–399 (1994).

    Article  CAS  Google Scholar 

  14. Abraham, W.C. & Bear, M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130 (1996).

    Article  CAS  Google Scholar 

  15. Miller, K.D. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374 (1996).

    Article  CAS  Google Scholar 

  16. Turrigiano, G.G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Article  CAS  Google Scholar 

  17. Abbott, L.F. & Nelson, S.B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2001).

    Article  Google Scholar 

  18. Desai, N.S., Rutherford, L.C. & Turrigiano, G.G. Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nat. Neurosci. 2, 515–520 (1999).

    Article  CAS  Google Scholar 

  19. Davis, G.W. & Goodman, C.S. Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr. Opin. Neurobiol. 8, 149–156 (1998).

    Article  CAS  Google Scholar 

  20. Davis, G. & Goodman, C.S. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392, 82–86 (1998).

    Article  CAS  Google Scholar 

  21. Rao, A. & Craig, A.M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

    Article  CAS  Google Scholar 

  22. Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C. & Nelson, S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  CAS  Google Scholar 

  23. Lissen, D.V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 (1998).

    Article  Google Scholar 

  24. O'Brien, R.J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Article  CAS  Google Scholar 

  25. Watt, A.J., van Rossum, M. C. W., MacLeod, K. M., Nelson, S. B. & Turrigiano, G. G. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26, 659–670 (2000).

    Article  CAS  Google Scholar 

  26. Leslie, K.R., Nelson, S.B. & Turrigiano, G.G. Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons. J. Neurosci. 21, RC170 (2001).

    Article  CAS  Google Scholar 

  27. Van Rossum, M.C.W., Bi, G.Q. & Turrigiano, G.G. Stable Hebbian learning from spike-timing dependent plasticity. J. Neurosci. 20, 8812–8821.

  28. Blue, M.E. & Parnavelas, J.G. The formation and maturation of synapses in the visual cortex of the rat. 1. Quantitative analysis. J. Neurocytol. 12, 599–616 (1983).

    Article  CAS  Google Scholar 

  29. Liu, G. & Tsien, R.W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375, 404–408 (1995).

    Article  CAS  Google Scholar 

  30. Hensch, T.K., Fagiolini, M., Mataga, N., Stryker, M.P., Baekkeskov, S. & Kash, S.F. Local GABA circuit control of experience-dependent plasticity in the developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  Google Scholar 

  31. Micheva, K.D. & Beaulieu, C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J. Comp. Neurol. 373, 340–354 (1996).

    Article  CAS  Google Scholar 

  32. Worley, P.F. et al. Constitutive expression of zif268 in neocortex is regulated by synaptic activity. Proc. Natl. Acad. Sci. USA 88, 5106–5110 (1991).

    Article  CAS  Google Scholar 

  33. Caleo, M., Lodovichi, C., Pizzorusso, T. & Maffei, L. Expression of the transcription factor Zif268 in the visual cortex of monocularly-deprived rats: effects of nerve growth factor. Neuroscience 91, 1017–1026 (1999).

    Article  CAS  Google Scholar 

  34. Caleo, M., Lodovichi, C. & Maffei, L. Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity. Eur. J. Neurosci. 11, 2979–2984 (1999).

    Article  CAS  Google Scholar 

  35. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  36. Zilles, K., Wree, A., Schleicher, A. & Divac, I. The monocular and binocular subfields of the rat's primary visual cortex: a quantitative morphological approach. J. Comp. Neurol. 226, 391–402 (1984).

    Article  CAS  Google Scholar 

  37. Reid, S.N.M. & Juraska, J.M. The cytoarchitectonic boundaries of the monocular and binocular areas of the rat primary visual cortex. Brain Res. 563, 293–296 (1991).

    Article  CAS  Google Scholar 

  38. Diamond, M.E., Armstrong-James, M. & Ebner, F.F. Experience-dependent plasticity in adult rat barrel cortex. Proc. Natl. Acad. Sci. USA 90, 2082–2086 (1993).

    Article  CAS  Google Scholar 

  39. Colman, H., Nabekura, J. & Lichtman, J.W. Alterations in synaptic strength preceding axon withdrawal. Science 275, 356–361 (1997).

    Article  CAS  Google Scholar 

  40. Cynader, M. & Mitchell, D.E. Prolonged sensitivity to monocular deprivation in dark-reared cats. J. Neurophysiol. 43, 1026–1054 (1980).

    Article  CAS  Google Scholar 

  41. Fagiolini, M., Pizzorusso, T., Berardi, N., Domenici, L. & Maffei, L. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark-rearing and monocular deprivation. Vis. Res. 34, 709–720 (1994).

    Article  CAS  Google Scholar 

  42. Crair, M.C. & Malenka, R.C. A critical period for long-term potentiation at thalamocortical synapses. Nature 375, 325–328 (1995).

    Article  CAS  Google Scholar 

  43. Gilbert, C.D. Adult cortical dynamics. Physiol. Rev. 78, 467–485 (1998).

    Article  CAS  Google Scholar 

  44. Guire, E.S., Lickey, M.E. & Gordon, B. Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials. J. Neurophysiol. 81, 121–128 (1999).

    Article  CAS  Google Scholar 

  45. Sillito, A.M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J. Physiol. (Lond.) 250, 305–329 (1975).

    Article  CAS  Google Scholar 

  46. Changnac-Amitai, Y. & Connors, B.W. Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J. Neurophysiol. 62, 1149–1162 (1989).

    Article  Google Scholar 

  47. Shadlen, M.N. & Newsome, W.T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 568–579 (1994).

    Article  Google Scholar 

  48. Kirkwood, A. & Bear, M.F. Hebbian synapses in visual cortex. J. Neurosci. 14, 1634–1645 (1994).

    Article  CAS  Google Scholar 

  49. Varela, J.A., Song, S., Turrigiano, G.G. & Nelson, S.B. Differential depression at excitatory and inhibitory synapses in visual cortex. J. Neurosci. 19, 4293–4304 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by National Institutes of Health grants RO1 NS 36853 and EY 11116. We are grateful for the technical assistance of T. Casimiro and M. Miller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina G. Turrigiano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, N., Cudmore, R., Nelson, S. et al. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci 5, 783–789 (2002). https://doi.org/10.1038/nn878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing