Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pre-existing pathways promote precise projection patterns

Abstract

A large body of evidence shows that molecular cues promote specific synapse formation by guiding axons and by mediating their association with targets, but much less is known about the contribution of physical cues (such as mechanical constraints) to these processes. Here we used the peripheral motor system to investigate the latter issue. In living mice, we viewed individual motor axons bearing a fluorescent reporter, and mapped the cohort of muscle fibers that they innervated both before and after nerve damage. When gross trauma was minimized (by a nerve-crushing rather than nerve-cutting procedure), regenerating axons retraced their former pathways, bifurcated at original branch points, and formed neuromuscular junctions on the same fibers that they originally innervated. Axonal growth through tubes of non-neural cells seemed to account for this specificity, and specificity degraded when the tubes were cut. These results suggest that nonspecific guidance cues can be sufficient to generate specific synaptic circuitry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selective reinnervation of original synaptic sites on original target cells in the sternomastoid muscle.
Figure 2: Axons retrace original paths to reach original targets in the platysma muscle.
Figure 3: Axonal regeneration assessed in double-transgenic mice, in which all axons are labeled with CFP (blue) and a single axon is also labeled with YFP (green when shown alone in a, c, k, mp and yellow when superimposed on the CFP image in ej).
Figure 4: Regenerating axons exit and enter Schwann cell tubes at former nodal sites.
Figure 5: Fragments of degenerating axoplasm reveal the patency of endoneurial tubes.
Figure 6: Poorly selective reinnervation of original targets after nerve cut.

Similar content being viewed by others

References

  1. Bernstein, J.J. & Guth, L. Nonselectivity in establishment of neuromuscular connections following nerve regeneration in the rat. Exp. Neurol. 4, 262–275 (1961).

    Article  CAS  Google Scholar 

  2. Brushart, T.M. & Mesulam, M.M. Alteration in connections between muscle and anterior horn motoneurons after peripheral nerve repair. Science 9, 603–605 (1980).

    Article  Google Scholar 

  3. Langley, J.N. On the regeneration of pre-ganglionic and post-ganglionic visceral nerve fibers. J. Physiol. (Lond.) 22, 215–230 (1897).

    Article  CAS  Google Scholar 

  4. Diamond, J., Foerster, A., Holmes, M. & Coughlin, M. Sensory nerves in adult rats regenerate and restore sensory function to the skin independently of endogenous NGF. J. Neurosci. 12, 1467–1476 (1992).

    Article  CAS  Google Scholar 

  5. Nja, A. & Purves, D. Re-innervation of guinea-pig superior cervical ganglion cells by preganglionic fibres arising from different levels of the spinal cord. J. Physiol. 272, 633–651 (1977).

    Article  CAS  Google Scholar 

  6. Desantis, M. & Norman, W.P. Location and completeness of reinnervation by two types of neurons at a single target: the feline muscle spindle. J. Comp. Neurol. 336, 66–76 (1993).

    Article  CAS  Google Scholar 

  7. Hendry, I.A., Hill, C.E. & Watters, D.J. Long term retention of Fast Blue in sympathetic neurons after axotomy and regeneration-demonstration of incorrect reconnections. Brain Res. 376, 292–298 (1986).

    Article  CAS  Google Scholar 

  8. Stankovic, N., Johansson, O. & Hildebrand, C. Occurrence of epidermal nerve endings in glabrous and hairy skin of the rat foot after sciatic nerve regeneration. Cell Tissue Res. 284, 161–166 (1996).

    Article  CAS  Google Scholar 

  9. Brushart, T.M., Henry, E.W. & Mesulam, M.M. Reorganization of muscle afferent projections accompanies peripheral nerve regeneration. Neuroscience 6, 2053–2061 (1981).

    Article  CAS  Google Scholar 

  10. Carlstedt, T. Approaches permitting and enhancing motor neuron regeneration after spinal cord, ventral root, plexus and peripheral nerve injuries. Curr. Opin. Neurobiol. 13, 683–686 (2000).

    Article  CAS  Google Scholar 

  11. Wigston, D.J. Selective innervation of transplanted limb muscles by regenerating motor axons in the axolotl. J. Neurosci. 6, 2757–2763 (1986).

    Article  CAS  Google Scholar 

  12. Wigston, D.J. & Sanes, J.R. Selective reinnervation of adult mammalian muscle by axons from different segmental levels. Nature 299, 464–467 (1982).

    Article  CAS  Google Scholar 

  13. Wigston, D.J. & Sanes, J.R. Selective reinnervation of rat intercostal muscles transplanted from different segmental levels to a common site. J. Neurosci. 5, 1208–1221 (1985).

    Article  CAS  Google Scholar 

  14. Hardman, V.J. & Brown, M.C. Accuracy of reinnervation of rat internal intercostal muscles by their own segmental nerves. J. Neurosci. 7, 1031–1036 (1987).

    Article  CAS  Google Scholar 

  15. Laskowski, M.B. & Sanes, J.R. Topographically selective reinnervation of adult mammalian skeletal muscles. J. Neurosci. 8, 3094–3099 (1988).

    Article  CAS  Google Scholar 

  16. DeSantis, M., Berger, P.K., Laskowski, M.B. & Norton, A.S. Regeneration by skeletomotor axons in neonatal rats is topographically selective at an early stage of reinnervation. Exp. Neurol. 116, 229–239 (1992).

    Article  CAS  Google Scholar 

  17. Laskowski, M.B., Colman, H., Nelson C. & Lichtman, J.W. Synaptic competition during the reformation of a neuromuscular map. J. Neurosci. 18, 7328–7335 (1998).

    Article  CAS  Google Scholar 

  18. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  19. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  20. Keller-Peck, C.R. et al. Asynchronous synapse elimination in neonatal motor units: studies using GFP transgenic mice. Neuron 31, 381–394 (2001).

    Article  CAS  Google Scholar 

  21. Rich, M.M. & Lichtman, J.W. In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle. J. Neurosci. 9, 1781–1805 (1989).

    Article  CAS  Google Scholar 

  22. Balice-Gordon, R.J. & Lichtman, J.W. In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions. J. Neurosci. 13, 834–855 (1993).

    Article  CAS  Google Scholar 

  23. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System Vol. 1 (eds. DeFelipe, J. & Jones, E. G.) 66–304 (Oxford Univ. Press, New York, 1928, reprinted 1991).

    Google Scholar 

  24. Gutmann, E. & Young, J.Z. The re-innervation of muscle after various periods of atrophy. J. Anatomy 78, 15–43 (1944).

    CAS  Google Scholar 

  25. Scherer, S.S. & Easter, S.S. Jr. Degenerative and regenerative changes in the trochlear nerve of goldfish. J. Neurocytol. 13, 519–565 (1984).

    Article  CAS  Google Scholar 

  26. Brown, M.C. & Hardman, V.J. A reassessment of the accuracy of reinnervation by motor neurons following crushing or freezing of the sciatic or lumbar spinal nerves of rats. Brain 110, 695–705 (1987).

    Article  Google Scholar 

  27. Sanes, J.R., Marshall, L.M. & McMahan, U.J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J. Cell Biol. 78, 176–198 (1978).

    Article  CAS  Google Scholar 

  28. Thomas, P.K., Berthold, C-H. & Ochoa, J. in Peripheral Neuropathy 3rd Edn., Vol. 1 (eds. Dyck, P. J. & Thomas, P. K.) 28–73 (W. B. Saunders, Philadelphia, 1993).

    Google Scholar 

  29. Young, J.Z. The functional repair of nervous tissue. Physiol. Rev. 22, 318–374 (1942).

    Article  Google Scholar 

  30. Griffin, J.W. & Hoffman, P.N. in Peripheral Neuropathy 3rd Edn., Vol. 1 (eds. Dyck, P. J. & Thomas, P. K.) 361–367 (W. B. Saunders, Philadelphia, 1993).

    Google Scholar 

  31. Balice-Gordon, R.J. & Lichtman, J.W. In vivo visualization of the growth of pre-and postsynaptic elements of neuromuscular junctions in the mouse. J. Neurosci. 10, 894–908 (1990).

    Article  CAS  Google Scholar 

  32. Bastmeyer, M., Daston, M.M., Possel, H. & O'Leary, D.D. Collateral branch formation related to cellular structures in the axon tract during corticopontine target recognition. J. Comp. Neurol. 392, 1–18 (1998).

    Article  CAS  Google Scholar 

  33. Melancon, E., Liu, D.W., Westerfield, M. & Eisen, J.S. Pathfinding by identified zebrafish motoneurons in the absence of muscle pioneers. J. Neurosci. 17, 7796–7804 (1997).

    Article  CAS  Google Scholar 

  34. Brown, M.C., Holland, R.L. & Hopkins, W.G. Motor nerve sprouting. Ann. Rev. Neurosci. 4, 17–42 (1981).

    Article  CAS  Google Scholar 

  35. Kugelberg, E., Edstrom, L. & Abbruzzese, M. Mapping of motor units in experimentally reinnervated rat muscle. Interpretation of histochemical and atrophic fiber patterns in neurogenic lesions. J. Neurol. Neurosurg. Psychiatry 33, 319–329 (1970).

    Article  CAS  Google Scholar 

  36. Sunderland, S. Nerves and Nerve Injuries Part 2, 69–144 (Churchill Livingstone, London, 1978).

    Google Scholar 

  37. Mueller, B.K. Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci. 22, 351–388 (1999).

    Article  CAS  Google Scholar 

  38. Benson, D.L., Colman, D.R. & Huntley, G.W. Molecules, maps and synapse specificity. Nat. Rev. Neurosci. 2, 899–909 (2001).

    Article  CAS  Google Scholar 

  39. Feng, G. et al. Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron 25, 295–306 (2000).

    Article  CAS  Google Scholar 

  40. Weiss, P. In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J. Exp. Zool. 68, 393–448 (1934).

    Article  Google Scholar 

  41. Ide, C. Peripheral nerve regeneration. Neurosci. Res. 25, 101–121 (1996).

    Article  CAS  Google Scholar 

  42. Fu, S.Y. & Gordon, T. The cellular and molecular basis of peripheral nerve regeneration. Mol. Neurobiol. 14, 67–116 (1997).

    Article  CAS  Google Scholar 

  43. Wang, K.H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771–784 (1999).

    Article  CAS  Google Scholar 

  44. Keller-Peck, C.R. et al. Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction. J. Neurosci. 21, 6136–6146 (2001).

    Article  CAS  Google Scholar 

  45. Westerfield, M. Substrate interactions affecting motor growth cone guidance during development and regeneration. J. Exp. Biol. 132, 161–175 (1987).

    CAS  PubMed  Google Scholar 

  46. Kiefer, R., Kieseier, B.C., Stoll, G. & Hartung, H.P. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog. Neurobiol. 64, 109–127 (2001).

    Article  CAS  Google Scholar 

  47. Salonen, V., Aho, H., Röyttä, M. & Peltonen, J. Quantitation of Schwann cells and endoneurial fibroblast-like cells after experimental nerve trauma. Acta Neuropathol. (Berl.) 75, 331–336 (1988).

    Article  CAS  Google Scholar 

  48. Lingle, C.J. & Steinbach, J.H. Neuromuscular blocking agents. Int. Anesthesiol. Clin. 26, 288–301 (1988).

    Article  CAS  Google Scholar 

  49. Akaaboune, M., Culican, S.M., Turney, S.G. & Lichtman, J.W. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 15, 503–507 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Bernstein and G. Feng for participating in initial experiments, and J. Tollett for assistance. This research was supported by grants from the National Institutes of Health (to J.W.L. and J.R.S.) and from the Bakewell NeuroImaging Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua R. Sanes or Jeff W. Lichtman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, Q., Sanes, J. & Lichtman, J. Pre-existing pathways promote precise projection patterns. Nat Neurosci 5, 861–867 (2002). https://doi.org/10.1038/nn905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing