Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial memory dissociations in mice lacking GluR1

Abstract

Gene-targeted mice lacking the AMPA receptor subunit GluR1 (GluR-A) have deficits in hippocampal CA3–CA1 long-term potentiation. We now report that they showed normal spatial reference learning and memory, both on the hidden platform watermaze task and on an appetitively motivated Y-maze task. In contrast, they showed a specific spatial working memory impairment during tests of non-matching to place on both the Y-maze and an elevated T-maze. In addition, successful watermaze and Y-maze reference memory performance depended on hippocampal function in both wild-type and mutant mice; bilateral hippocampal lesions profoundly impaired performance on both tasks, to a similar extent in both groups. These results suggest that different forms of hippocampus-dependent spatial memory involve different aspects of neural processing within the hippocampus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GluR1−/− mice are impaired on a spatial working memory task but not a non-spatial reference memory task on the T-maze.
Figure 2: GluR1−/− mice show normal spatial reference memory on the elevated Y-maze.
Figure 3: GluR1−/− mice acquire a standard spatial reference memory version of the Morris watermaze task.
Figure 4: GluR1−/− and wild-type mice with bilateral cytotoxic hippocampal lesions are impaired during re-acquisition of the standard spatial reference memory version of the Morris watermaze task.
Figure 5: GluR1−/− and wild-type mice with bilateral cytotoxic hippocampal lesions are impaired during re-acquisition of the standard spatial reference memory version of the elevated Y-maze task.

Similar content being viewed by others

References

  1. Bliss, T.V.P. & Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  2. Bliss, T.V.P. & Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    CAS  Google Scholar 

  3. Martin, S.J., Grimwood, P.D. & Morris, R.G.M. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  4. Morris, R.G.M., Garrud, P., Rawlins, J.N.P. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  Google Scholar 

  5. Morris, R.G.M., Anderson, E., Lynch, G.S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  Google Scholar 

  6. Bannerman, D.M., Good, M.A., Butcher, S.P., Ramsay, M. & Morris, R.G.M. Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378, 182–186 (1995).

    Article  CAS  Google Scholar 

  7. Saucier, D. & Cain, D.P. Spatial learning without NMDA receptor-dependent long-term potentiation. Nature 378, 186–189 (1995).

    Article  CAS  Google Scholar 

  8. Tsien, J.Z., Huerta, P.T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  Google Scholar 

  9. Tang, Y-P. et al. Genetic enhancement of learning and memory in mice. Nature 401, 63–69 (1999).

    Article  CAS  Google Scholar 

  10. Chen, C. & Tonegawa, S. Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20, 157–184 (1997).

    Article  CAS  Google Scholar 

  11. Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    Article  CAS  Google Scholar 

  12. Olton, D.S., Becker, J.T. & Handelmann, E. Hippocampus, space and memory. Behav. Brain Sci. 2, 313–366 (1979).

    Article  Google Scholar 

  13. Rawlins, J.N.P. & Olton, D.S. The septohippocampal system and cognitive mapping. Behav. Brain Res. 5, 331–358 (1982).

    Article  CAS  Google Scholar 

  14. Deacon, R.M.J., Bannerman, D.M., Kirby, B.P., Croucher, A. & Rawlins, J.N.P. The effects of cytotoxic hippocampal lesions in mice on a cognitive test battery. Behav. Brain Res. 133, 57–68 (2002).

    Article  Google Scholar 

  15. Tonkiss, J. & Rawlins, J.N.P. The competitive NMDA antagonist, AP5, but not the non-competitive antagonist, MK-801, induces a delay-related impairment in spatial working memory in rats. Exp. Brain Res. 85, 349–358 (1991).

    Article  CAS  Google Scholar 

  16. Steele, R.J. & Morris, R.G.M. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA antagonist D-AP5. Hippocampus 9, 118–136 (1999).

    Article  CAS  Google Scholar 

  17. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).

    Google Scholar 

  18. Morris, R.G.M., Schenk, F., Tweedie, F. & Jarrard, L.E. Ibotenate lesions of the hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur. J. Neurosci. 2, 1016–1028 (1990).

    Article  Google Scholar 

  19. Logue, S.F., Paylor, R. & Wehner, J.M. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned fear task. Behav. Neurosci. 111, 104–113 (1997).

    Article  CAS  Google Scholar 

  20. Bannerman, D.M. et al. Double dissociation of function within the hippocampus: a comparison of dorsal, ventral and complete hippocampal cytotoxic lesions. Behav. Neurosci. 113, 1170–1188 (1999).

    Article  CAS  Google Scholar 

  21. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  22. Pike, F.G., Meredith, R.M., Olding, A.W. & Paulsen, O. Post-synaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in the rat hippocampus. J. Physiol. (Lond.) 518, 571–576 (1999).

    Article  CAS  Google Scholar 

  23. Paulsen, O. & Sejnowski, T.J. Natural patterns of activity and long-term synaptic plasticity. Curr. Opin. Neurobiol. 10, 172–179 (2000).

    Article  CAS  Google Scholar 

  24. Hoffman, D., Sprengel, R. & Sakmann, B. Molecular dissection of associative plasticity in CA1 hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 99, 7740–7745 (2002).

    Article  CAS  Google Scholar 

  25. Morris, R.G.M. Spatial localisation does not depend on the presence of local cues. Learn. Motiv. 12, 239–269 (1981).

    Article  Google Scholar 

  26. Morris, R.G.M. Development of a watermaze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a European Union (E.U.) Framework V grant (QLG 3-CT-1999-01022). The authors would like to thank G. Daubney for assistance with the histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Bannerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisel, D., Bannerman, D., Schmitt, W. et al. Spatial memory dissociations in mice lacking GluR1. Nat Neurosci 5, 868–873 (2002). https://doi.org/10.1038/nn910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing