Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

STED microscopy reveals crystal colour centres with nanometric resolution

Abstract

Because they have spin states that can be optically polarized and detected, fluorescent nitrogen vacancies in diamond1,2,3 have considerable potential for applications in quantum cryptography4,5 and computation6,7,8, as well as for nanoscale magnetic imaging9,10 and biolabelling11,12. However, their optical detection and control are hampered by the diffraction resolution barrier of far-field optics. Here, we show that stimulated emission depletion (STED) microscopy13,14 is capable of imaging nitrogen-vacancy centres with nanoscale resolution and Ångström precision using focused light. The far-field optical control of the population of their excited state at the nanoscale expands the versatility of these centres and demonstrates the suitability of STED microscopy to image dense colour centres in crystals. Nitrogen-vacancy defects show great potential as tags for far-field optical nanoscopy15 because they exhibit nearly ideal STED without bleaching. Measured point-spread functions of 5.8 nm in width demonstrate an all-physics-based far-field optical resolving power exceeding the wavelength of light by two orders of magnitude.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulated emission depletion of the excited state ‘switches off’ a charged nitrogen-vacancy colour centre by light.
Figure 2: Stimulated emission depletion microscopy reveals densely packed nitrogen-vacancy centres in diamond.
Figure 3: STED microscopy without photobleaching.
Figure 4: Maximizing the resolving power by optimizing STED in a single direction.

Similar content being viewed by others

References

  1. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  Google Scholar 

  2. Jelezko, F. & Wrachtrup, J. Single defect centres in diamond: a review. Phys. Status Solidi A 203, 3207–3225 (2006).

    Article  ADS  Google Scholar 

  3. Wrachtrup, J. & Jelezko, F. Processing quantum information in diamond. J. Phys. Condens. Matter 18, S807–S824 (2006).

    Article  ADS  Google Scholar 

  4. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  ADS  Google Scholar 

  5. Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    Article  ADS  Google Scholar 

  6. Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    Article  ADS  Google Scholar 

  7. Gurudev Dutt, M. V. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  8. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gwyat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  ADS  Google Scholar 

  9. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  10. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    Article  ADS  Google Scholar 

  11. Fu, C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    Article  ADS  Google Scholar 

  12. Chao, J. I. et al. Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93, 2199–2208 (2007).

    Article  ADS  Google Scholar 

  13. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  14. Klar, T. A. & Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999).

    Article  ADS  Google Scholar 

  15. Hell, S. W. Toward fluorescence nanoscopy. Nature Biotechnol. 21, 1347–1355 (2003).

    Article  Google Scholar 

  16. Westphal, V. & Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903 (2005).

    Article  ADS  Google Scholar 

  17. Dyba, M. & Hell, S. W. Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).

    Article  ADS  Google Scholar 

  18. Donnert, G. et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl Acad. Sci. USA 103, 11440–11445 (2006).

    Article  ADS  Google Scholar 

  19. Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    Article  ADS  Google Scholar 

  20. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    Article  ADS  Google Scholar 

  21. Kühn, S., Hettich, C., Schmitt, C., Poizat, J. P. H. & Sandoghdar, V. Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. J. Microsc. 202, 2–6 (2001).

    Article  MathSciNet  Google Scholar 

  22. Harke, B. et al. Resolution scaling in STED microscopy. Opt. Express 16, 4154–4162 (2008).

    Article  ADS  Google Scholar 

  23. Heisenberg, W. The Physical Principles of the Quantum Theory (Chicago Univ. Press, 1930).

    MATH  Google Scholar 

  24. Bobroff, N. Position measurement with a resolution and noise-limited instrument. Rev. Sci. Instrum. 57, 1152–1157 (1986).

    Article  ADS  Google Scholar 

  25. Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  ADS  Google Scholar 

  26. Gordon, M. P., Ha, T. & Selvin, P. R. Single-molecule high-resolution imaging with photobleaching. Proc. Natl Acad. Sci. USA 101, 6462–6465 (2004).

    Article  ADS  Google Scholar 

  27. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  28. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Meth. 3, 793–796 (2006).

    Article  Google Scholar 

  29. Fölling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Meth. 5, 943–945 (2008).

    Article  Google Scholar 

  30. Rittweger, E., Rankin, B. R., Westphal, V. & Hell, S. W. Fluorescence depletion mechanisms in super-resolving STED microscopy. Chem. Phys. Lett. 442, 483–487 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge motivating discussions with R. Walsworth and M. Lukin about magnetic imaging and also with F. Jelezko, who provided us with the nitrogen-vacancy diamond crystals. Furthermore, we thank A. Schönle for support with the software ImSpector, and J. Keller and M. Lauterbach for help with data analysis software. S.E.I. and K.Y.H gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada and from the Korea Research Foundation Grant funded by the Korean Government (MOEHRD), respectively. K.Y.H. is on leave from the Department of Chemistry, Seoul National University, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan W. Hell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittweger, E., Han, K., Irvine, S. et al. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon 3, 144–147 (2009). https://doi.org/10.1038/nphoton.2009.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing