Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Production and characterization of adeno-associated viral vectors

Abstract

The adeno-associated virus (AAV) is one of the most promising viral vectors for human gene therapy. As with any potential therapeutic system, a thorough understanding of it at the in vitro and in vivo levels is required. Over the years, numerous methods have been developed to better characterize AAV vectors. These methods have paved the way to a better understanding of the vector and, ultimately, its use in clinical applications. This review provides an up-to-date, detailed description of essential methods such as production, purification and titering and their application to characterize current AAV vectors for preclinical and clinical use.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram summarizing the production and purification of rAAV.
Figure 2: Illustration of iodixanol gradients before and after centrifugation.
Figure 3
Figure 4: Dot blot of five rAAV preparations.
Figure 5: Graphical representation of the suggested portion of the transgene plasmid to be used as the template of the probe for dot-blot analysis.
Figure 6: An example of standard curve generated using Microsoft Excel.
Figure 7: Graphical representation of the difference between conventional ssAAV and scAAV vectors.
Figure 8: Transmission electron microscopy of rAAV.
Figure 9: Southern blot of CsCl gradient fractions of a scAAV preparation.
Figure 10: Southern blot of vector DNA isolated from HEK-293 cells infected with rAAV containing genomes of sizes 4,675 nucleotides (nt), 5,302 nt and 6,019 nt in the presence of transfected adenovirus helper (XX680) and AAV2 helper (pHelper).
Figure 11: Picture of the infectious center assay apparatus.
Figure 12: Infectious center assay of a purified rAAV preparation.
Figure 13: HeLa cells were infected by serially diluted scAAV (0.1 IU/cell–20 IU/cell).

References

  1. Xiao, X., Li, J. & Samulski, R.J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J. Virol. 72, 2224–2232 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Grimm, D., Kern, A., Rittner, K. & Kleinschmidt, J.A. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9, 2745–2760 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Collaco, R.F., Cao, X. & Trempe, J.P. A helper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 238, 397–405 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Matsushita, T. et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 5, 938–945 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Salvetti, A. et al. Factors influencing recombinant adeno-associated virus production. Hum. Gene Ther. 9, 695–706 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, X. et al. High-titer recombinant adeno-associated virus production from replicating amplicons and herpes vectors deleted for glycoprotein H. Hum. Gene Ther. 10, 2527–2537 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Clark, K.R., Voulgaropoulou, F., Fraley, D.M. & Johnson, P.R. Cell lines for the production of recombinant adeno-associated virus. Hum. Gene Ther. 6, 1329–1341 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Clark, K.R. Recent advances in recombinant adeno-associated virus vector production. Kidney Int. 61, 9–15 (2002).

    Article  Google Scholar 

  9. Gao, G.P. et al. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. Hum. Gene Ther. 9, 2353–2362 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, X. & Li, C.Y. Generation of recombinant adeno-associated virus vectors by a complete adenovirus-mediated approach. Mol. Ther. 3, 787–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, H.G. et al. Recombinant adenovirus expressing adeno-associated virus cap and rep proteins supports production of high-titer recombinant adeno-associated virus. Gene Ther. 8, 704–712 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Conway, J.E. et al. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap. Gene Ther. 6, 986–993 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Qiao, C., Wang, B., Zhu, X., Li, J. & Xiao, X. A novel gene expression control system and its use in stable, high-titer 293 cell-based adeno-associated virus packaging cell lines. J. Virol. 76, 13015–13027 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Inoue, N. & Russell, D.W. Packaging cells based on inducible gene amplification for the production of adeno-associated virus vectors. J. Virol. 72, 7024–7031 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Urabe, M., Ding, C. & Kotin, R.M. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13, 1935–1943 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Ruffing, M., Zentgraf, H. & Kleinschmidt, J.A. Assembly of viruslike particles by recombinant structural proteins of adeno-associated virus type 2 in insect cells. J. Virol. 66, 6922–6930 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Samulski, R.J., Chang, L.S. & Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096–3101 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao, G., Vandenberghe, L.H. & Wilson, J.M. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5, 285–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Choi, V.W., McCarty, D.M. & Samulski, R.J. AAV hybrid serotypes: improved vectors for gene delivery. Curr. Gene Ther. 5, 299–310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao, G. et al. Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo. Hum. Gene Ther. 11, 2079–2091 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Zolotukhin, S. et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Walters, R.W., Pilewski, J.M., Chiorini, J.A. & Zabner, J. Secreted and transmembrane mucins inhibit gene transfer with AAV4 more efficiently than AAV5. J. Biol. Chem. 277, 23709–23713 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Rabinowitz, J.E. et al. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J. Virol. 78, 4421–4432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaludov, N., Handelman, B. & Chiorini, J.A. Scalable purification of adeno-associated virus type 2, 4, or 5 using ion-exchange chromatography. Hum. Gene Ther. 13, 1235–1243 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Grieger, J.C. & Samulski, R.J. Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J. Virol. 79, 9933–9944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clark, K.R., Voulgaropoulou, F. & Johnson, P.R. A stable cell line carrying adenovirus-inducible rep and cap genes allows for infectivity titration of adeno-associated virus vectors. Gene Ther. 3, 1124–1132 (1996).

    CAS  PubMed  Google Scholar 

  28. Samulski, R.J. & Shenk, T. Adenovirus E1B 55-Mr polypeptide facilitates timely cytoplasmic accumulation of adeno-associated virus mRNAs. J. Virol. 62, 206–210 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McCarty, D.M. et al. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112–2118 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Zolotukhin, S. Production of recombinant adeno-associated virus vectors. Hum. Gene Ther. 16, 551–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Choi, V.W., Asokan, A., Haberman, R.A., McCown, T.J. & Samulski, R.J. Production of Recombinant Adeno-Associated Viral Vectors and Use in In Vitro and In Vivo Administration (John Wiley and Sons, Winston-Salem, North Carolina, 2006).

  32. Ferrari, F.K., Samulski, T., Shenk, T. & Samulski, R.J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Atchison, R.W., Casto, B.C. & Hammon, W.M. Adenovirus-associated defective virus particles. Science 149, 754–756 (1965).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, S. et al. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum. Gene Ther. 16, 235–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Chao, H., Monahan, P.E., Liu, Y., Samulski, R.J. & Walsh, C.E. Sustained and complete phenotype correction of hemophilia B mice following intramuscular injection of AAV1 serotype vectors. Mol. Ther. 4, 217–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hoggan, M.D., Blacklow, N.R. & Rowe, W.P. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc. Natl. Acad. Sci. USA 55, 1467–1474 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu, H. et al. Self-complementary adeno-associated virus serotype 2 vector: global distribution and broad dispersion of AAV-mediated transgene expression in mouse brain. Mol. Ther. 8, 911–917 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Z. et al. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther. 10, 2105–2111 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y. et al. Specific and efficient transduction of Cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol. Ther. 12, 725–733 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Parks, W.P., Green, M., Pina, M. & Melnick, J.L. Physicochemical characterization of adeno-associated satellite virus type 4 and its nucleic acid. J. Virol. 1, 980–987 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiorini, J.A., Yang, L., Liu, Y., Safer, B. & Kotin, R.M. Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J. Virol. 71, 6823–6833 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, G., Martins, I.H., Chiorini, J.A. & Davidson, B.L. Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther. 12, 1503–1508 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bantel-Schaal, U. & zur Hausen, H. Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology 134, 52–63 (1984).

    Article  CAS  PubMed  Google Scholar 

  44. Chiorini, J.A., Kim, F., Yang, L. & Kotin, R.M. Cloning and characterization of adeno-associated virus type 5. J. Virol. 73, 1309–1319 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zabner, J. et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J. Virol. 74, 3852–3858 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lotery, A.J. et al. Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina. Hum. Gene Ther. 14, 1663–1671 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Apparailly, F. et al. Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints. Hum. Gene Ther. 16, 426–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Rutledge, E.A., Halbert, C.L. & Russell, D.W. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J. Virol. 72, 309–319 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Blankinship, M.J. et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol. Ther. 10, 671–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Halbert, C.L., Allen, J.M. & Miller, A.D. Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat. Biotechnol. 20, 697–701 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, G.P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad. Sci. USA 99, 11854–11859 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, G. et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Louboutin, J.P., Wang, L. & Wilson, J.M. Gene transfer into skeletal muscle using novel AAV serotypes. J. Gene Med. 7, 442–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Z. et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat. Biotechnol. 23, 321–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Z. et al. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes 55, 875–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Pacak, C.A. et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ. Res. 99, E3–E9 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Mori, S., Wang, L., Takeuchi, T. & Kanda, T. Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology 330, 375–383 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Muramatsu, S., Mizukami, H., Young, N.S. & Rown, K.E. Nucleotide sequencing and generation of an infections clone of adeno-associated virus 3. Virology 221, 208–217 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Asokan, M. Hirsh, C. Li and Z. Wu for helpful discussions and critical reading of the manuscript. This work was supported in part by US National Institutes of Health grants GM059299, HL051818 and HL066973 (awarded to R.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Jude Samulski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grieger, J., Choi, V. & Samulski, R. Production and characterization of adeno-associated viral vectors. Nat Protoc 1, 1412–1428 (2006). https://doi.org/10.1038/nprot.2006.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.207

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing