Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Serial sectioning and electron microscopy of large tissue volumes for 3D analysis and reconstruction: a case study of the calyx of Held

Abstract

Serial section electron microscopy is typically applied to investigation of small tissue volumes encompassing subcellular structures. However, in neurobiology, the need to relate subcellular structure to organization of neural circuits can require investigation of large tissue volumes at ultrastructural resolution. Analysis of ultrastructure and three-dimensional reconstruction of even one to a few cells is time consuming, and still does not generate the necessary numbers of observations to form well-grounded insights into biological principles. We describe an assemblage of existing computer-based methods and strategies for graphical analysis of large photographic montages to accomplish the study of multiple neurons through large tissue volumes. Sample preparation, data collection and subsequent analyses can be completed within 3–4 months. These methods generate extremely large data sets that can be mined in future studies of nervous system organization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Project flow chart showing estimated times for each step.
Figure 2: Flat embedding and re-embedding of tissue for ultrathin sectioning.
Figure 3: EM montages of ultrathin sections.
Figure 4: Required steps for reconstruction of cells from serial EM.
Figure 5: Quantitative measures of calyces of Held in P4 mice.

Similar content being viewed by others

References

  1. Campbell, P.K., Jones, K.E., Huber, R.J., Horch, K.W. & Normann, R.A. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38, 758–768 (1991).

    Article  CAS  Google Scholar 

  2. Hoogerwerf, A.C. & Wise, K.D. A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41, 1136–1146 (1994).

    Article  CAS  Google Scholar 

  3. Spirou, G.A., Rager, J. & Manis, P.B. Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136, 843–863 (2005).

    Article  CAS  Google Scholar 

  4. Fiala, J.C., Feinberg, M., Popov, V. & Harris, K.M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  Google Scholar 

  5. Fiala, J.C. & Harris, K.M. Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J. Am. Med. Inform. Assoc. 8, 1–16 (2001).

    Article  CAS  Google Scholar 

  6. Woolf, T.B., Shepherd, G.M. & Greer, C.A. Serial reconstructions of granule cell spines in the mammalian olfactory bulb. Synapse 7, 181–192 (1991).

    Article  CAS  Google Scholar 

  7. Wilson, C.J., Groves, P.M., Kitai, S.T. & Linder, J.C. Three-dimensional structure of dendritic spines in the rat neostriatum. J. Neurosci. 3, 383–388 (1983).

    Article  CAS  Google Scholar 

  8. Harris, K.M. & Stevens, J.K. Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 8, 4455–4469 (1988).

    Article  CAS  Google Scholar 

  9. Famiglietti, E.V. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J. Comp. Neurol. 309, 40–70 (1991).

    Article  CAS  Google Scholar 

  10. Nicol, M.J. & Walmsley, B. Ultrastructural basis of synaptic transmission between endbulbs of Held and bushy cells in the rat cochlear nucleus. J. Physiol. 539, 713–723 (2002).

    Article  CAS  Google Scholar 

  11. Satzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).

    Article  CAS  Google Scholar 

  12. Kosaka, T. Synapses in the granule cell layer of the rat dentate gyrus: serial-sectioning study. Exp. Brain Res. 112, 237–243 (1996).

    Article  CAS  Google Scholar 

  13. Gibbins, I.L., Rodgers, H.F., Matthew, S.E. & Murphy, S.M. Synaptic organisation of lumbar sympathetic ganglia of guinea pigs: serial section ultrastructural analysis of dye-filled sympathetic final motor neurons. J. Comp. Neurol. 402, 285–302 (1998).

    Article  CAS  Google Scholar 

  14. Ramón y Cajal, S. Histologie du Système Nerveux de l'Homme & des Vertébrés. Madrid (Spain): Instituto Ramón y Cajal 1955 (1909).

  15. White, J.G., Southgate, E., J.N., T. & Brenner, S. The structure of the nervous-system of the nematode Caenorhabditis-elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  16. Lorente de No, R. The Primary Acoustic Nuclei (Raven Press, New York, 1981).

    Google Scholar 

  17. Ryugo, D.K. & Sento, S. Synaptic connections of the auditory nerve in cats: relationship between endbulbs of held and spherical bushy cells. J. Comp. Neurol. 305, 35–48 (1991).

    Article  CAS  Google Scholar 

  18. Cant, N.B. & Morest, D.K. The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience 4, 1925–1945 (1979).

    Article  CAS  Google Scholar 

  19. Tolbert, L.P., Morest, D.K. & Yurgelun-Todd, D.A. The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: horseradish peroxidase labelling of identified cell types. Neuroscience 7, 3031–3052 (1982).

    Article  CAS  Google Scholar 

  20. Held, H. Die centrale Gehorleitung. Archiv. Anat. Physiol. Anat. Abt 17, 201–248 (1893).

    Google Scholar 

  21. Morest, D.K. The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z. Anat. Entwicklungsgesch. 127, 201–220 (1968).

    Article  CAS  Google Scholar 

  22. Berrebi, A.S. & Spirou, G.A. PEP-19 immunoreactivity in the cochlear nucleus and superior olive of the cat. Neuroscience 83, 535–554 (1998).

    Article  CAS  Google Scholar 

  23. Hoffpauir, B.K., Grimes, J.L., Mathers, P.H. & Spirou, G.A. Synaptogenesis of the calyx of Held: rapid onset of function and one-to-one morphological innervation. J. Neurosci. 26, 5511–5523 (2006).

    Article  CAS  Google Scholar 

  24. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  25. Hessler, D. et al. Programs for visualization in three-dimensional microscopy. Neuroimage 1, 55–67 (1992).

    Article  CAS  Google Scholar 

  26. Fiala, J.C. Reconstruct a free editor for serial section microscopy. J. Microsc. 218, 52–61 (2005).

    Article  CAS  Google Scholar 

  27. Chow, S.K. et al. Automated microscopy system for mosaic acquisition and processing. J. Microsc. 222, 76–84 (2006).

    Article  CAS  Google Scholar 

  28. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Article  Google Scholar 

  29. Briggman, K.L. & Denk, W. Towards neural circuit reconstruction with volume electron microscopy techniques. Curr. Opin. Neurobiol. 16, 562–570 (2006).

    Article  CAS  Google Scholar 

  30. Leighton, S.B. SEM images of block faces, cut by a miniature microtome within the SEM—a technical note. Scan. Electron Microsc. 2, 73–76 (1981).

    Google Scholar 

  31. Sosinsky, G.E. et al. Development of a model for microphysiological simulations: small nodes of ranvier from peripheral nerves of mice reconstructed by electron tomography. Neuroinformatics 3, 133–162 (2005).

    Article  Google Scholar 

  32. Harris, K.M. et al. Uniform serial sectioning for transmission electron microscopy. J. Neurosci. 26, 12101–12103 (2006).

    Article  CAS  Google Scholar 

  33. Bozzola, J.J. & Russell, L.D. Electron Microscopy: Principles and Techniques for Biologists (Jones and Bartlett, Sudbury, MA., 1999).

    Google Scholar 

  34. Reid, N. & Beesley, J.E. Sectioning and cryosectioning for electron microscopy. in Practical Methods in Electron Microscopy (ed. Glauert, A.M.) (Elsevier, New York, 1991).

    Google Scholar 

  35. Hayat, M.A. Principles and Techniques of Electron Microscopy: Biological Applications (Cambridge University Press, Cambridge, UK, 2000).

    Google Scholar 

  36. Friedrich, V.L. & Mugnaini, E. Preparation of neural tissues for electron microscopy. in Neuroanatomical Tract Tracing Methods (eds. Heimer, L. & RoBards, M.J.) 345–374 (Plennum Press, New York, 1982).

    Google Scholar 

  37. Mannella, C.A., Marko, M. & Buttle, K. Reconsidering mitochondrial structure: new views of an old organelle. Trends Biochem. Sci. 22, 37–38 (1997).

    Article  CAS  Google Scholar 

  38. Soto, G.E. et al. Serial section electron tomography: a method for three-dimensional reconstruction of large structures. Neuroimage 1, 230–243 (1994).

    Article  CAS  Google Scholar 

  39. Perkins, G. et al. Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119, 260–272 (1997).

    Article  CAS  Google Scholar 

  40. Wilson, C.J., Mastronarde, D.N., McEwen, B. & Frank, J. Measurement of neuronal surface area using high-voltage electron microscope tomography. Neuroimage 1, 11–22 (1992).

    Article  CAS  Google Scholar 

  41. Winslow, J.L., Hollenberg, M.J. & Lea, P.J. Resolution limit of serial sections for 3D reconstruction of tubular cristae in rat liver mitochondria. J. Electron Microsc. Tech. 18, 241–248 (1991).

    Article  CAS  Google Scholar 

  42. Peachey, L.D. Thin sections. I. A study of section thickness and physical distortion produced during microtomy. J. Biophys. Biochem. Cytol. 4, 233–242 (1958).

    Article  CAS  Google Scholar 

  43. De Groot, D.M. Comparison of methods for the estimation of the thickness of ultrathin tissue sections. J. Microsc. 151, 23–42 (1988).

    Article  CAS  Google Scholar 

  44. Small, J.V. in Abstracts Fourth European Regional Conference on Electron Microscopy 1, 609–610 (1968).

    Google Scholar 

  45. Mouton, P.R. Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists (Johns Hopkins University Press, Baltimore, MD, 2002).

    Google Scholar 

  46. Larue, D.T. & Winer, J.A. Postembedding immunocytochemistry of large sections of brain tissue: an improved flat embedding technique. J. Neurosci. Methods 68, 125–132 (1996).

    CAS  PubMed  Google Scholar 

  47. Kandler, K. & Friauf, E. Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J. Comp. Neurol. 328, 161–184 (1993).

    Article  CAS  Google Scholar 

  48. Kil, J., Kageyama, G.H., Semple, M.N. & Kitzes, L.M. Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil. J. Comp. Neurol. 353, 317–340 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NIDCD (DC005035) and an NIH/NCRR COBRE grant (P20 RR14474) to the Sensory Neuroscience Research Center. We acknowledge Janet Cyr and Guy Perkins for constructive comments, Albert Berrebi for introducing G.S. to electron microscopy and Erika Hartweig for demonstrating serial section techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A Spirou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Graphical reconstruction of calyces of Held. (PDF 99 kb)

Supplementary Box. 1

Tissue Preparation for Electron Microscopy. (PDF 104 kb)

Supplementary Box. 2

Grid Preparation (6 hours). (PDF 86 kb)

Supplementary Movie

3D reconstruction of a calyx of Held. (MOV 16098 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffpauir, B., Pope, B. & Spirou, G. Serial sectioning and electron microscopy of large tissue volumes for 3D analysis and reconstruction: a case study of the calyx of Held. Nat Protoc 2, 9–22 (2007). https://doi.org/10.1038/nprot.2007.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing