Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The evolution of thalidomide and its IMiD derivatives as anticancer agents

Abstract

Thalidomide was originally used to treat morning sickness, but was banned in the 1960s for causing serious congenital birth defects. Remarkably, thalidomide was subsequently discovered to have anti-inflammatory and anti-angiogenic properties, and was identified as an effective treatment for multiple myeloma. A series of immunomodulatory drugs — created by chemical modification of thalidomide — have been developed to overcome the original devastating side effects. Their powerful anticancer properties mean that these drugs are now emerging from thalidomide's shadow as useful anticancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumour-necrosis factor-α has numerous targets.
Figure 2: Co-stimulatory activity of thalidomide.
Figure 3: Structure of thalidomide and the IMiDs CC-5013 and CC-4047.
Figure 4: Antitumour activity of IMiDs in multiple myeloma.
Figure 5: The potential mechanisms of IMiD-mediated antitumour activity.

References

  1. McBride, W. G. Thalidomide and congenital abnormalities. Lancet 2, 1358 (1961).

  2. Lenz, W. Thalidomide and congenital abnormalities. Lancet 1, 45 (1961).

  3. Fullerton, P. M. & Kremer, M. Neuropathy after intake of thalidomide. Br. Med. J. 2, 855–858 (1961).

    Article  CAS  Google Scholar 

  4. Sheskin, J. Thalidomide in the treatment of lepra reactions. Clin. Pharmacol. Ther. 6, 303–306 (1965).

    Article  CAS  Google Scholar 

  5. Iyer, G. C. et al. WHO co-ordinated short-term double-blind trial with thalidomide in the treatment of acute lepra reactions in male lepromatous patients. Bull. World Health Organ. 45, 719–732 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Marriott, J. B., Muller, G. & Dalgleish, A. G. Thalidomide as an emerging immunotherapeutic agent. Immunol. Today 583, 538–540 (1999).

    Article  Google Scholar 

  7. Raje, N. & Anderson, K. Thalidomide — a revival story. N. Engl. J. Med. 341, 1606–1609 (1999).

    Article  CAS  Google Scholar 

  8. Hales, B. Thalidomide on the comeback trail. Nature Med. 5, 489–490 (1999).

    Article  CAS  Google Scholar 

  9. Sampaio, E. P. et al. The influence of thalidomide on the clinical and immunologic manifestation of erythema nodosum leprosum. J. Infect. Dis. 168, 408–414 (1993).

    Article  CAS  Google Scholar 

  10. Gutierrez-Rodriguez, O. Thalidomide. A promising new treatment for rheumatoid arthritis. Arthritis Rheum. 27, 1118–1121 (1984).

    Article  CAS  Google Scholar 

  11. Atra, E. & Sato, E. I. Treatment of the cutaneous lesions of systemic lupus erythematosus with thalidomide. Clin. Exp. Rheumatol. 11, 487–493 (1993).

    CAS  PubMed  Google Scholar 

  12. Hamza, M. H. Treatment of Behcet's disease with thalidomide. Clin. Rheumatol. 5, 365–371 (1986).

    Article  CAS  Google Scholar 

  13. McCarthy, D. M., Kanfer, E. J. & Barrett, A. J. Thalidomide for the therapy of graft-versus-host disease following allogeneic bone marrow transplantation. Biomed. Pharmacother. 43, 693–697 (1989).

    Article  CAS  Google Scholar 

  14. Heney, D. et al. Thalidomide treatment for chronic graft-versus-host disease. Br. J. Hematol. 78, 23–27 (1991).

    Article  CAS  Google Scholar 

  15. Vogelsang, G. B. et al. Thalidomide for the treatment of chronic graft-versus-host disease. N. Engl. J. Med. 326, 1055–1058 (1992).

    Article  CAS  Google Scholar 

  16. Sampaio, E. P., Sarno, E. N., Galilly, R., Cohn, Z. A. & Kaplan, G. Thalidomide selectively inhibits tumour necrosis factor α production by stimulated human monocytes. J. Exp. Med. 173, 699–703 (1991).

    Article  CAS  Google Scholar 

  17. Lokensgard, J. R. et al. Effect of thalidomide on chemokine production by human microglia. J. Infect. Dis. 182, 983–987 (2000).

    Article  CAS  Google Scholar 

  18. Deng, L., Ding, W. & Granstein, R. D. Thalidomide inhibits tumour necrosis factor-α production and antigen presentation by langerhans cells. J. Invest. Dermatol. 121, 1060–1065 (2003).

    Article  CAS  Google Scholar 

  19. Szlosarek, P. W. & Balkwill, F. R. Tumour necrosis factor α: a potential target for the therapy of solid tumours. Lancet Oncol. 4, 565–573 (2003).

    Article  CAS  Google Scholar 

  20. Wettstein, A. R. & Meagher, A. P. Thalidomide in Crohn's disease. Lancet 350, 1445–1446 (1997).

    Article  CAS  Google Scholar 

  21. D'Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl Acad. Sci. 91, 4082–4085 (1994).

    Article  CAS  Google Scholar 

  22. Tabin, C. J. A developmental model for thalidomide defects. Nature 396, 322–323 (1998).

    Article  CAS  Google Scholar 

  23. Parman, T., Wiley, M. J. & Wells, P. G. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nature Med. 5, 582–585 (1999).

    Article  CAS  Google Scholar 

  24. Haslett, P. A., Corral, L. G., Albert, M. & Kaplan, G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J. Exp. Med. 187, 1885–1892 (1998).

    Article  CAS  Google Scholar 

  25. Moller, D. R. et al. Inhibition of IL-12 production by thalidomide. J. Immunol. 159, 5157–5161 (1997).

    CAS  PubMed  Google Scholar 

  26. Wolkenstein, P. et al. Randomised comparison of thalidomide versus placebo in toxic epidermal necrolysis. Lancet 352, 1586–1589 (1998).

    Article  CAS  Google Scholar 

  27. Ruegg, C. et al. Evidence for the involvement of endothelial cell integrin αVβ3 in the disruption of the tumour vasculature induced by TNF and IFN-γ. Nature Med. 4, 408–414 (1998).

    Article  CAS  Google Scholar 

  28. Singhal, S. et al. Antitumour activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341, 1565–1571 (1999).

    Article  CAS  Google Scholar 

  29. Kumar, S. et al. Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia 18, 624–627 (2004).

    Article  CAS  Google Scholar 

  30. Juliusson, G. et al. Frequent good partial remissions from thalidomide including best response ever in patients with advanced refractory and relapsed myeloma. Br. J. Hematol. 109, 89–96 (2000).

    Article  CAS  Google Scholar 

  31. Weber, D. Thalidomide and its derivatives: new promise for multiple myeloma. Cancer Control 10, 375–382 (2003).

    Article  Google Scholar 

  32. Garcia-Sanz, R. et al. The oral combination of thalidomide, cyclophosphamide and dexamethasone (ThaCyDex) is effective in relapsed/refractory multiple myeloma. Leukemia 19 Feb 2004 (doi:10.1038/sj.leu.2403322).

  33. Stebbing, J. et al. The treatment of advanced renal cell cancer patients with high dose oral thalidomide. Brit. J. Cancer 85, 953–958 (2001).

    Article  CAS  Google Scholar 

  34. Gordon, R. et al. Current status of thalidomide and its role in the treatment of metastatic prostate cancer. Crit. Rev. Oncol. Hematol. 46, S49–S57 (2003).

    Article  Google Scholar 

  35. Fine, H. A. et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high grade gliomas. J. Clin. Oncol. 18, 708–715 (2000).

    Article  CAS  Google Scholar 

  36. Eisen, T. et al. Continuous low dose thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br. J. Cancer 82, 812–817 (2000).

    Article  CAS  Google Scholar 

  37. Fanelli, M. et al. Thalidomide: a new anticancer drug? Exp. Opin. Investig. Drugs 12, 1211–1225 (2003).

    Article  CAS  Google Scholar 

  38. Kumar, S., Witzig, T. E. & Rajkumar, S. V. Thalidomide as an anti-cancer agent. J. Cell. Mol. Med. 6, 160–174 (2002).

    Article  CAS  Google Scholar 

  39. Marriott, J. B., Muller, G. W., Stirling, D. & Dalgleish, A. G. Immunotherapeutic and anti-tumour potential of thalidomide analogues. Exp. Opin. Biol. Ther. 1, 675–682 (2001).

    Article  CAS  Google Scholar 

  40. Muller, G. W. et al. Structural modifications of thalidomide produce analogs with enhanced tumour necrosis factor inhibitory activity. J. Med. Chem. 39, 3238–3240 (1996).

    Article  CAS  Google Scholar 

  41. Marriott, J. B. et al. CC-3052: a water soluble analog of thalidomide and potent inhibitor of activation-induced TNF-α production. J. Immunol. 161, 4236–4243 (1998).

    CAS  PubMed  Google Scholar 

  42. Muller, G. W. et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-α production. Bioorg. Med. Chem. Lett. 9, 1625–1630 (1999).

    Article  CAS  Google Scholar 

  43. Lentzsch, S. et al. S-3-Amino-phthalimido-glutarimide inhibits angiogenesis and growth of B-cell neoplasias in mice. Cancer Res. 62, 2300–2305 (2002).

    CAS  PubMed  Google Scholar 

  44. Dredge, K. et al. Potent anti-angiogenic activity across distinct classes of thalidomide analogues is independent of immunomodulatory activity. Br. J. Cancer 87, 1166–1172 (2002).

    Article  CAS  Google Scholar 

  45. Marriott, J. B. et al. Thalidomide and its analogues have distinct and opposing effects on TNF-α and TNFR2 during costimulation of both CD4+ and CD8+ T cells. Clin. Exp. Immunol. 130, 75–84 (2002).

    Article  CAS  Google Scholar 

  46. LeBlanc, R. et al. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 103, 1787–1790 (2004).

    Article  CAS  Google Scholar 

  47. Schafer, P. H. et al. Enhancement of cytokine production and AP-1 transcriptional activity in T Cells by thalidomide-related immunomodulatory drugs. J. Pharmacol. Exp. Ther. 305, 1222–1232 (2003).

    Article  CAS  Google Scholar 

  48. Dredge, K. et al. Protective anti-tumour immunity induced by a costimulatory thalidomide analogue in an autologous vaccination model of colorectal cancer is mediated by increased Th1-type immunity. J. Immunol. 168, 4914–4919 (2002).

    Article  CAS  Google Scholar 

  49. Davies, F. E. et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98, 210–216 (2001).

    Article  CAS  Google Scholar 

  50. Hideshima, T. et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96, 2943–2950 (2000).

    CAS  PubMed  Google Scholar 

  51. Hideshima, T. & Anderson, K. C. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nature Rev. Cancer 2, 927–937 (2002).

    Article  CAS  Google Scholar 

  52. Mitsiades, N. et al. Apoptotic signalling induced by immunomodulatory thalidomide analogues in human multiple myeloma cells: therapeutic implications. Blood 99, 4525–4530 (2002).

    Article  CAS  Google Scholar 

  53. Gupta, D. et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15, 1950–1961 (2001).

    Article  CAS  Google Scholar 

  54. Richardson, P. G. et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100, 3063–3067 (2002).

    Article  CAS  Google Scholar 

  55. Bartlett, J. B. et al. A phase I study to determine the safety, tolerability and immunostimulatory activity of thalidomide analogue CC–5013 in patients with metastatic malignant melanoma and other advanced cancers. Br. J. Cancer 90, 955–961 (2004).

    Article  CAS  Google Scholar 

  56. Schey, S. A., Jones, R. W., Raj, K. & Streetley M. A phase I study of an immunomodulatory drug (CC-4047), a structural analogue of thalidomide, in relapsed/refractory multiple myeloma. Exp. Hematol. 30, 280 (2002).

    Google Scholar 

  57. Eigler, A., Sinha, B., Hartmann, G. & Endres S. Taming TNF: strategies to restrain this proinflammatory cytokine. Immunol. Today 18, 487–492 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Blake Bartlett.

Ethics declarations

Competing interests

J. Blake Bartlett is a group leader in Biology/Drug Discovery at Celgene Corporation. Angus G. Dalgleish is employed as a consultant for Celgene and holds stock in the company.

Related links

Related links

DATABASES

Cancer.gov

colorectal cancer

glioma

melanoma

multiple myeloma

myelodysplastic syndromes

prostate cancer

renal cancer

LocusLink

CD28

IL-12

IL-6

TNF-α

TRAIL

vascular endothelial growth factor

OMIM

Behcet's disease

systemic lupus erythematosus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, J., Dredge, K. & Dalgleish, A. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 4, 314–322 (2004). https://doi.org/10.1038/nrc1323

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1323

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing