Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

p53 and E2f: partners in life and death

Key Points

  • There is extensive crosstalk between the Rb–E2f and MDM2–p53 pathways, and specifically between the transcription factors E2F1 and p53, which influences vital cellular decisions.

  • The abundance and activity of both p53 and E2f are often controlled by the same cancer-associated stimuli. Their common regulators include checkpoint kinases and acetyltransferases, MDM2 and the CDKN2A locus.

  • Deregulated E2f, which is often present in human tumours, constitutes an oncogenic stress that activates p53. Specifically, E2f indirectly affects the level and activity of p53 by upregulating the expression of many proteins that stabilize and activate p53. Examples include ARF, ataxia telangiectasia mutated and PIN1.

  • E2f and p53 cooperate in restricting tumorigenesis by inducing cell death. Their cooperation in apoptosis is attributed to the ability of E2F1 to activate p53. In addition, they activate many pro-apoptotic genes that may cooperate in apoptosis.

  • Protein complexes that contain Rb family members and repressor E2fs mediate p53-induced growth arrest and senescence; the latter is an important in vivo mechanism that contributes to protection against cancer.

Abstract

During tumour development cells sustain mutations that disrupt normal mechanisms controlling proliferation. Remarkably, the Rb–E2f and MDM2–p53 pathways are both defective in most, if not all, human tumours, which underscores the crucial role of these pathways in regulating cell cycle progression and viability. A simple interpretation of the observation that both pathways are deregulated is that they function independently in the control of cell fate. However, a large body of evidence indicates that, in addition to their independent effects on cell fate, there is extensive crosstalk between these two pathways, and specifically between the transcription factors E2F1 and p53, which influences vital cellular decisions. This Review discusses the molecular mechanisms that underlie the intricate interactions between E2f and p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation and activities of p53 and E2f.
Figure 2: Common regulators of E2f and p53.
Figure 3: E2f regulates p53 level and activity.
Figure 4: E2F1 and p53 cooperate in apoptosis.
Figure 5: E2f in growth control.

Similar content being viewed by others

References

  1. Murray-Zmijewski, F., Slee, E. A. & Lu, X. A complex barcode underlies the heterogeneous response of p53 to stress. Nature Rev. Mol. Cell Biol. 9, 702–712 (2008).

    CAS  Google Scholar 

  2. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    CAS  PubMed  Google Scholar 

  3. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992). This paper demonstrates that the absence of the wild-type Trp53 gene in mice predisposes them to various neoplastic diseases.

    CAS  PubMed  Google Scholar 

  4. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    CAS  PubMed  Google Scholar 

  5. Dimova, D. K. & Dyson, N. J. The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826 (2005).

    CAS  PubMed  Google Scholar 

  6. Polager, S. & Ginsberg, D. E2F — at the crossroads of life and death. Trends Cell Biol. 18, 528–535 (2008).

    CAS  PubMed  Google Scholar 

  7. Stanelle, J. & Putzer, B. M. E2F1-induced apoptosis: turning killers into therapeutics. Trends Mol. Med. 12, 177–185 (2006).

    CAS  PubMed  Google Scholar 

  8. DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2f family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).

    CAS  PubMed  Google Scholar 

  9. Iaquinta, P. J. & Lees, J. A. Life and death decisions by the E2F transcription factors. Curr. Opin. Cell Biol. 19, 649–657 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson, D. G. & Degregori, J. Putting the oncogenic and tumor suppressive activities of E2F into context. Curr. Mol. Med. 6, 731–738 (2006).

    CAS  PubMed  Google Scholar 

  11. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 (1998).

    CAS  PubMed  Google Scholar 

  12. Saavedra, H. I. et al. Specificity of E2F1, E2F2, and E2F3 in mediating phenotypes induced by loss of Rb. Cell Growth Differ. 13, 215–225 (2002).

    CAS  PubMed  Google Scholar 

  13. Ziebold, U., Reza, T., Caron, A. & Lees, A. J. E2F3 contributes both to the inappropriate proliferation and to the apoptosis arising in Rb mutant embryos. Genes & Dev. 15, 386–391 (2001).

    CAS  Google Scholar 

  14. Yamasaki, L. et al. Loss of E2F1 reduces tumorigenesis and extends the lifespan of Rb1+/− mice. Nature Genetics 18, 360–364 (1998).

    CAS  PubMed  Google Scholar 

  15. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    CAS  PubMed  Google Scholar 

  16. Oeggerli, M. et al. E2F3 amplification and overexpression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer. Oncogene 23, 5616–5623 (2004).

    CAS  PubMed  Google Scholar 

  17. Feber, A. et al. Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 23, 1627–1630 (2004).

    CAS  PubMed  Google Scholar 

  18. Foster, C. S. et al. Transcription factor E2F3 overexpressed in prostate cancer independently predicts clinical outcome. Oncogene 23, 5871–5879 (2004).

    CAS  PubMed  Google Scholar 

  19. Levine, A. J. The common mechanisms of transformation by the small DNA tumor viruses: The inactivation of tumor suppressor gene products: p53. Virology 384, 285–293 (2008).

    PubMed  Google Scholar 

  20. Blattner, C., Sparks, A. & Lane, D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell. Biol. 19, 3704–3713 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Connor, D. J. & Lu, X. Stress signals induce transcriptionally inactive E2F-1 independently of p53 and Rb. Oncogene 19, 2369–2376 (1999).

    Google Scholar 

  22. Maltzman, W. & Czyzyk, L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 4, 1689–1694 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).

    CAS  PubMed  Google Scholar 

  24. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679 (1998).

    CAS  PubMed  Google Scholar 

  25. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, W. C., Lin, F. T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001). This work suggests a role for E2F1 in apoptosis signalling in response to DNA damage, involving the ATM and/or ATR pathway, which also controls p53 accumulation in response to DNA damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stevens, C., Smith, L. & La Thangue, N. B. Chk2 activates E2F-1 in response to DNA damage. Nature Cell Biol. 5, 401–409 (2003). The authors demonstrate that CHK2 phosphorylates and activates E2F1 in response to DNA damage resulting in apoptosis, suggesting a role for E2F1 in checkpoint control.

    CAS  PubMed  Google Scholar 

  28. Urist, M., Tanaka, T., Poyurovsky, M. V. & Prives, C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 18, 3041–3054 (2004). The authors show that CHK1, CHK2, E2F1 and p73 function in a pathway that mediates p53-independent cell death in response to cytotoxic drugs. This study brings together new modulators of chemosensitivity in human cells and is of potential therapeutic importance.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pediconi, N. et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nature Cell Biol. 5, 552–558 (2003). This study shows that, in response to DNA damage, E2F1 is acetylated and directed preferentially to apoptotic E2f target genes, providing an explanation for how E2F1 stabilization in response to DNA damage translates into apoptotic activity.

    CAS  PubMed  Google Scholar 

  30. Ianari, A., Gallo, R., Palma, M., Alesse, E. & Gulino, A. Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J. Biol. Chem. 279, 30830–30835 (2004).

    CAS  PubMed  Google Scholar 

  31. Galbiati, L., Mendoza-Maldonado, R., Gutierrez, M. I. & Giacca, M. Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination. Cell Cycle 4, 930–939 (2005).

    CAS  PubMed  Google Scholar 

  32. Kwon, H. S. & Ott, M. The ups and downs of SIRT1. Trends Biochem. Sci. 33, 517–525 (2008).

    CAS  PubMed  Google Scholar 

  33. Wang, C. et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nature Cell Biol. 8, 1025–1031 (2006).

    CAS  PubMed  Google Scholar 

  34. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Langley, E. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 21, 2383–2396 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Michael, D. & Oren, M. The p53-Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 13, 49–58 (2003).

    CAS  PubMed  Google Scholar 

  37. Marine, J. C. et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 13, 927–934 (2006).

    CAS  PubMed  Google Scholar 

  38. Ofir-Rosenfeld, Y., Boggs, K., Michael, D., Kastan, M. B. & Oren, M. Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol. Cell 32, 180–189 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao, Z. X. et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375, 694–698 (1995).

    CAS  PubMed  Google Scholar 

  40. Martin, K. et al. Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature 375, 691–694 (1995).

    CAS  PubMed  Google Scholar 

  41. Hsieh, J. K. et al. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol. Cell 3, 181–193 (1999).

    CAS  PubMed  Google Scholar 

  42. Sdek, P. et al. The central acidic domain of MDM2 is critical in inhibition of retinoblastoma-mediated suppression of E2F and cell growth. J. Biol. Chem. 279, 53317–53322 (2004).

    CAS  PubMed  Google Scholar 

  43. Sdek, P. et al. MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol. Cell 20, 699–708 (2005).

    CAS  PubMed  Google Scholar 

  44. Zhang, Z. et al. Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene 24, 7238–7247 (2005).

    CAS  PubMed  Google Scholar 

  45. Loughran, O. & La Thangue, N. B. Apoptotic and growth-promoting activity of E2F modulated by MDM2. Mol. Cell. Biol. 20, 2186–2197 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ambrosini, G. et al. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26, 3473–3481 (2007).

    CAS  PubMed  Google Scholar 

  47. Peirce, S. K. & Findley, H. W. The MDM2 antagonist nutlin-3 sensitizes p53-null neuroblastoma cells to doxorubicin via E2F1 and TAp73. Int. J. Oncol. 34, 1395–1402 (2009).

    CAS  PubMed  Google Scholar 

  48. Kitagawa, M., Aonuma, M., Lee, S. H., Fukutake, S. & McCormick, F. E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27, 5303–5314 (2008).

    CAS  PubMed  Google Scholar 

  49. Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a–Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003).

    CAS  PubMed  Google Scholar 

  50. Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    CAS  Google Scholar 

  51. Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Ablation of the retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions. Genes Dev. 14, 3051–3064 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sage, J. et al. Targeted disruption of the three Rb-related genes leads to loss of G1 control and immortalization. Genes Dev. 14, 3037–3050 (2000). This research confirms the essential role of the Rb family in the control of the G1/S transition and furthers the link between loss of cell cycle control and tumorigenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rowland, B. D. et al. E2F transcriptional repressor complexes are critical downstream targets of p19ARF/p53-induced proliferative arrest. Cancer Cell 2, 55–65 (2002). The authors show that disruption of E2f-mediated transcriptional repression causes a general increase in the expression of E2f target genes and renders cells resistant to senescence induced by either ARF or p53. This study demonstrates that INK4A and ARF–p53 converge at the level of E2f repressor complexes.

    CAS  PubMed  Google Scholar 

  54. Schmitt, C. A. et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).

    CAS  PubMed  Google Scholar 

  55. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998). This paper identifies ARF as a link between the Rb–E2f pathway and p53. The authors show that loss of Rb results in E2f-dependent upregulation of ARF, which leads to p53 stabilization and activation.

    CAS  PubMed  Google Scholar 

  56. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    CAS  Google Scholar 

  57. Komori, H., Enomoto, M., Nakamura, M., Iwanaga, R. & Ohtani, K. Distinct E2F-mediated transcriptional program regulates p14ARF gene expression. EMBO J. 24, 3724–3736 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Martelli, F. et al. p19ARF targets certain E2F species for degradation. Proc. Natl Acad. Sci. USA 98, 4455–4460 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Eymin, B. et al. Human ARF binds E2F1 and inhibits its transcriptional activity. Oncogene 20, 1033–1041 (2001).

    CAS  PubMed  Google Scholar 

  60. Mason, S. L., Loughran, O. & La Thangue, N. B. p14ARF regulates E2F activity. Oncogene 21, 4220–4230 (2002).

    CAS  PubMed  Google Scholar 

  61. Russell, J. L. et al. ARF differentially modulates apoptosis induced by E2F1 and Myc. Mol. Cell. Biol. 22, 1360–1368 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsai, K. Y., MacPherson, D., Rubinson, D. A., Crowley, D. & Jacks, T. ARF is not required for apoptosis in Rb mutant mouse embryos. Curr. Biol. 12, 159–163 (2002).

    CAS  PubMed  Google Scholar 

  63. Robertson, K. D. & Jones, P. A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457–6473 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tolbert, D., Lu, X., Yin, C., Tantama, M. & Van Dyke, T. p19ARF is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo. Mol. Cell. Biol. 22, 370–377 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rogoff, H. A., Pickering, M. T., Debatis, M. E., Jones, S. & Kowalik, T. F. E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis. Mol. Cell. Biol. 22, 5308–5318 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Berkovich, E. & Ginsberg, D. ATM is a target for positive regulation by E2F-1. Oncogene 22, 161–167 (2003).

    CAS  PubMed  Google Scholar 

  67. Powers, J. T. et al. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol. Cancer Res. 2, 203–214 (2004).

    CAS  PubMed  Google Scholar 

  68. Rogoff, H. A. et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol. Cell. Biol. 24, 2968–2977 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hershko, T., Korotayev, K., Polager, S. & Ginsberg, D. E2F1 Modulates p38 MAPK phosphorylation via transcriptional regulation of ASK1 and Wip1. J. Biol. Chem. 281, 31309–31316 (2006).

    CAS  PubMed  Google Scholar 

  70. Tort, F. et al. Retinoblastoma pathway defects show differential ability to activate the constitutive DNA damage response in human tumorigenesis. Cancer Res. 66, 10258–10263 (2006).

    CAS  PubMed  Google Scholar 

  71. Fogal, V., Hsieh, J. K., Royer, C., Zhong, S. & Lu, X. Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. EMBO J. 24, 2768–2782 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hsieh, J. K. et al. Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage. Mol. Cell. Biol. 22, 78–93 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ryo, A. et al. PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell. Biol. 22, 5281–5295 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, L. & Wang, C. F-box protein Skp2: a novel transcriptional target of E2F. Oncogene 25, 2615–2627 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    CAS  PubMed  Google Scholar 

  76. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    CAS  PubMed  Google Scholar 

  77. Mantovani, F. et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Struct. Mol. Biol. 14, 912–920 (2007).

    CAS  Google Scholar 

  78. Kitagawa, M., Lee, S. H. & McCormick, F. Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol. Cell 29, 217–231 (2008).

    CAS  PubMed  Google Scholar 

  79. Pierce, A. M., Fisher, S. M., Conti, C. J. & Johnson, D. G. Deregulated expression of E2F1 induces hyperplasia and cooperates with ras in skin tumor development. Oncogene 16, 1267–1276 (1998).

    CAS  PubMed  Google Scholar 

  80. Pierce, A. M. et al. Increased E2F1 activity induces skin tumors in mice heterozygous and nullizygous for p53. Proc. Natl Acad. Sci. USA 95, 8858–8863 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994). This study shows that co-expression of wild-type p53 and E2F1 results in apoptosis and it demonstrates communication between the RB–E2F1 pathway and p53.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002).

    CAS  PubMed  Google Scholar 

  83. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).

    CAS  PubMed  Google Scholar 

  84. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    CAS  PubMed  Google Scholar 

  85. Han, J. et al. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc. Natl Acad. Sci. USA 98, 11318–11323 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    CAS  PubMed  Google Scholar 

  87. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    CAS  PubMed  Google Scholar 

  88. Fortin, A. et al. The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressors p53 and E2F1. J. Biol. Chem. 279, 28706–28714 (2004).

    CAS  PubMed  Google Scholar 

  89. Hershko, T. & Ginsberg, D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J. Biol. Chem. 279, 8627–8634 (2004). This study provided a new direct link between E2f and the apoptotic machinery that possibly explains the increased sensitivity of cells with a defective Rb–E2f pathway to chemotherapy.

    CAS  PubMed  Google Scholar 

  90. Wu, Y., Mehew, J. W., Heckman, C. A., Arcinas, M. & Boxer, L. M. Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 20, 240–251 (2001).

    CAS  PubMed  Google Scholar 

  91. Eischen, C. M. et al. Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene 20, 6983–6993 (2001).

    CAS  PubMed  Google Scholar 

  92. Croxton, R., Ma, Y., Song, L., Haura, E. B. & Cress, W. D. Direct repression of the Mcl-1 promoter by E2F1. Oncogene 21, 1359–1369 (2002).

    CAS  PubMed  Google Scholar 

  93. Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E. & George, D. L. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nature Cell Biol. 6, 443–450 (2004).

    CAS  PubMed  Google Scholar 

  94. Hershko, T., Chaussepied, M., Oren, M. & Ginsberg, D. Novel link between E2F and p53: proapoptotic cofactors of p53 are transcriptionally upregulated by E2F. Cell Death Differ. 12, 377–383 (2005).

    CAS  PubMed  Google Scholar 

  95. Fogal, V. et al. ASPP1 and ASPP2 are new transcriptional targets of E2F. Cell Death Differ. 12, 369–376 (2005).

    CAS  PubMed  Google Scholar 

  96. Chen, D., Padiernos, E., Ding, F., Lossos, I. S. & Lopez, C. D. Apoptosis-stimulating protein of p53–52 (ASPP2/53BP2L) is an E2F target gene. Cell Death Differ. 12, 358–368 (2005).

    CAS  PubMed  Google Scholar 

  97. Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781–794 (2001).

    CAS  PubMed  Google Scholar 

  98. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    CAS  PubMed  Google Scholar 

  99. Moon, N. S. et al. Drosophila E2F1 has context-specific pro- and antiapoptotic properties during development. Dev. Cell 9, 463–475 (2005). Using loss-of-function experiments the authors demonstrate that E2f cannot be classified simply as a pro- or anti-apoptotic factor. Instead, the overall role of E2f in the damage response depends on the cellular context.

    CAS  PubMed  Google Scholar 

  100. Timmers, C. et al. E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol. Cell. Biol. 27, 65–78 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sharma, N. et al. Control of the p53–p21CIP1 axis by E2f1, E2f2, and E2f3 is essential for G1/S progression and cellular transformation. J. Biol. Chem. 281, 36124–36131 (2006).

    CAS  PubMed  Google Scholar 

  102. Wu, L. et al. The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001). By targeting the entire subclass of activator E2fs this paper provides direct genetic evidence for the essential role of activator E2fs in cell cycle progression, proliferation and development.

    CAS  PubMed  Google Scholar 

  103. Aslanian, A., Iaquinta, P. J., Verona, R. & Lees, J. A. Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. Genes Dev. 18, 1413–1422 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Harrington, E. A., Bruce, J. L., Harlow, E. & Dyson, N. pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc. Natl Acad. Sci. USA 95, 11945–11950 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Polager, S. & Ginsberg, D. E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J. Biol. Chem. 278, 1443–1449 (2003).

    CAS  PubMed  Google Scholar 

  106. Taylor, W. R., Schonthal, A. H., Galante, J. & Stark, G. R. p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J. Biol. Chem. 276, 1998–2006 (2001).

    CAS  PubMed  Google Scholar 

  107. Flatt, P. M., Tang, L. J., Scatena, C. D., Szak, S. T. & Pietenpol, J. A. p53 regulation of G2 checkpoint is retinoblastoma protein dependent. Mol. Cell Biol. 20, 4210–4223 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    CAS  PubMed  Google Scholar 

  109. Harvey, M. et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8, 2457–2467 (1993).

    CAS  PubMed  Google Scholar 

  110. Ou, Y. H. et al. The candidate tumor suppressor BTG3 is a transcriptional target of p53 that inhibits E2F1. EMBO J. 26, 3968–3980 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Raver-Shapira, N. et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol. Cell 26, 731–743 (2007).

    CAS  PubMed  Google Scholar 

  112. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130–1134 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tazawa, H., Tsuchiya, N., Izumiya, M. & Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl Acad. Sci. USA 104, 15472–15477 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Welch, C., Chen, Y. & Stallings, R. L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017–5022 (2007).

    CAS  PubMed  Google Scholar 

  115. Humbert, P. O. et al. E2f3 is critical for normal cellular proliferation. Genes Dev. 14, 690–703 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Oeggerli, M. et al. E2F3 is the main target gene of the 6p22 amplicon with high specificity for human bladder cancer. Oncogene 25, 6538–6543 (2006).

    CAS  PubMed  Google Scholar 

  117. Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA 102, 8204–8209 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Tracy, K. et al. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol. Cell. Biol. 27, 6229–6242 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Polager, S., Ofir, M. & Ginsberg, D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27, 4860–4864 (2008).

    CAS  PubMed  Google Scholar 

  120. Tasdemir, E. et al. Regulation of autophagy by cytoplasmic p53. Nature Cell Biol. 10, 676–687 (2008).

    CAS  PubMed  Google Scholar 

  121. Weisz, L., Oren, M. & Rotter, V. Transcription regulation by mutant p53. Oncogene 26, 2202–2211 (2007).

    CAS  PubMed  Google Scholar 

  122. Li, J. et al. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev. Cell 14, 62–75 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Brosh, R. et al. p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol. Syst. Biol. 4, 229 (2008). This study positions p53- and E2f-regulated miRNAs as key players in the proliferation network and the p53–E2f crosstalk.

    PubMed  PubMed Central  Google Scholar 

  124. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet. 8, 450–461 (2007).

    CAS  PubMed  Google Scholar 

  125. Ueda, K., Arakawa, H. & Nakamura, Y. Dual-specificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene 22, 5586–5591 (2003).

    CAS  PubMed  Google Scholar 

  126. Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306, 2105–2108 (2004).

    CAS  PubMed  Google Scholar 

  127. Radhakrishnan, S. K. et al. Constitutive expression of E2F-1 leads to p21-dependent cell cycle arrest in S phase of the cell cycle. Oncogene 23, 4173–4176 (2004).

    CAS  PubMed  Google Scholar 

  128. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).

    CAS  PubMed  Google Scholar 

  129. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).

    CAS  PubMed  Google Scholar 

  130. Stiewe, T. & Putzer, B. M. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nature Genet. 26, 464–469 (2000).

    CAS  PubMed  Google Scholar 

  131. Crighton, D., O'Prey, J., Bell, H. S. & Ryan, K. M. p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death. Cell Death Differ. 14, 1071–1079 (2007).

    CAS  PubMed  Google Scholar 

  132. Fuster, J. J., Sanz-Gonzalez, S. M., Moll, U. M. & Andres, V. Classic and novel roles of p53: prospects for anticancer therapy. Trends Mol. Med. 13, 192–199 (2007).

    CAS  PubMed  Google Scholar 

  133. Cobrinik, D. Pocket proteins and cell cycle control. Oncogene 24, 2796–2809 (2005).

    CAS  PubMed  Google Scholar 

  134. Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Ginsberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Pathway Interaction Database 

ARF

E2f

p38

FURTHER INFORMATION

Doron Ginsberg's homepage

Glossary

Autophagy

A catabolic process involving the degradation of a cell's own components by the lysosomal machinery.

Replicative senescence

A largely irreversible spontaneous proliferative arrest of normal untransformed cells after a limited number of cell divisions. It is often caused by progressive shortening of the telomeres at each round of cell division.

Premature senescence

Senescence that occurs before telomeric shortening. Such premature senescence is often associated with the activation of the tumour suppressors INK4A, ARF, p53 and RB.

Gain-of-function mutations

Mutations that change the gene such that the protein gains a new and abnormal function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polager, S., Ginsberg, D. p53 and E2f: partners in life and death. Nat Rev Cancer 9, 738–748 (2009). https://doi.org/10.1038/nrc2718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing