Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer biology and NuRD: a multifaceted chromatin remodelling complex

Key Points

  • The nucleosome remodelling and histone deacetylase (NuRD; also known as Mi-2) complex is a multisubunit chromatin remodelling complex that contains two core subunits (chromodomain-helicase-DNA-binding protein 3 (CHD3; also known as Mi-2α) and CHD4 (also known as Mi-2β), and histone deacetylase 1 (HDAC1) and HDAC2) with enzymatic functions. CHD3 and CHD4 catalyse ATP-dependent chromatin remodelling, and HDAC1 and HDAC2 mediate histone and protein deacetylation.

  • All subunits of the complex are encoded by multiple gene paralogues. Combinatorial assembly of these paralogues contributes to the targeting and function of the complex.

  • The metastasis-associated gene 1 (MTA1) subunit is widely overexpressed in many types of cancer and is associated with poor prognosis.

  • Unlike other chromatin remodelling complexes with well-defined roles in cancer, the NuRD complex can promote or suppress tumorigenesis depending on context.

  • NuRD complex recruitment to specific loci is mediated by multiple mechanisms, including recruitment by transcription factors and direct interaction with methylated DNA.

  • Emerging evidence suggests non-transcriptional roles of the NuRD complex in the maintenance of genome stability, including DNA replication, chromatin assembly and DNA repair.

Abstract

The nucleosome remodelling and histone deacetylase (NuRD; also known as Mi-2) complex regulates gene expression at the level of chromatin. The NuRD complex has been identified — using both genetic and molecular analyses — as a key determinant of differentiation in mouse embryonic stem cells and during development in various model systems. Similar to other chromatin remodellers, such as SWI/SNF and Polycomb complexes, NuRD has also been implicated in the regulation of transcriptional events that are integral to oncogenesis and cancer progression. Emerging molecular details regarding the recruitment of NuRD to specific loci during development, and the modulation of these events in cancer, are used to illustrate how the inappropriate localization of the complex could contribute to tumour biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms by which the NuRD complex interacts with different factors to promote cancer development.
Figure 2: Non-transcriptional mechanisms by which the NuRD complex maintains genome stability.

Similar content being viewed by others

References

  1. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    CAS  PubMed  Google Scholar 

  2. Denslow, S. A. & Wade, P. A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438 (2007).

    CAS  PubMed  Google Scholar 

  3. Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E. & Schreiber, S. L. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395, 917–921 (1998).

    CAS  PubMed  Google Scholar 

  4. Wade, P. A., Jones, P. L., Vermaak, D. & Wolffe, A. P. A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr. Biol. 8, 843–846 (1998).

    CAS  PubMed  Google Scholar 

  5. Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2, 851–861 (1998).

    CAS  PubMed  Google Scholar 

  6. Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).

    CAS  PubMed  Google Scholar 

  7. Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660–672 (2009).

    CAS  PubMed  Google Scholar 

  8. Wade, P. A. et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet. 23, 62–66 (1999).

    CAS  PubMed  Google Scholar 

  9. Brackertz, M., Boeke, J., Zhang, R. & Renkawitz, R. Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3. J. Biol. Chem. 277, 40958–40966 (2002).

    CAS  PubMed  Google Scholar 

  10. Feng, Q. et al. Identification and functional characterization of the p66/p68 components of the MeCP1 complex. Mol. Cell. Biol. 22, 536–546 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Marhold, J., Brehm, A. & Kramer, K. The Drosophila methyl-DNA binding protein MBD2/3 interacts with the NuRD complex via p55 and MI-2. BMC Mol. Biol. 5, 20 (2004).

    PubMed  PubMed Central  Google Scholar 

  12. Loyola, A. & Almouzni, G. Histone chaperones, a supporting role in the limelight. Biochim. Biophys. Acta 1677, 3–11 (2004).

    CAS  PubMed  Google Scholar 

  13. Brackertz, M., Gong, Z., Leers, J. & Renkawitz, R. p66α and p66β of the Mi-2/NuRD complex mediate MBD2 and histone interaction. Nucleic Acids Res. 34, 397–406 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119, 75–86 (2004). This study is the first to demonstrate the association of the MTA subunit to a tissue-specific transcription factor for mediating transcriptional repression.

    CAS  PubMed  Google Scholar 

  16. Le Guezennec, X. et al. MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol. Cell. Biol. 26, 843–851 (2006). This study demonstrates that MBD2 and MBD3 form mutually exclusive NuRD complexes.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Saito, M. & Ishikawa, F. The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. J. Biol. Chem. 277, 35434–35439 (2002).

    CAS  PubMed  Google Scholar 

  18. Hendrich, B. & Tweedie, S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269–277 (2003).

    CAS  PubMed  Google Scholar 

  19. Aguilera, C. et al. c-Jun N-terminal phosphorylation antagonises recruitment of the Mbd3/NuRD repressor complex. Nature 469, 231–235 (2011). This study demonstrates the protein–protein interaction property of the MBD domain within MBD3.

    CAS  PubMed  Google Scholar 

  20. Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Rev. Mol. Cell Biol. 9, 206–218 (2008).

    CAS  Google Scholar 

  22. You, A., Tong, J. K., Grozinger, C. M. & Schreiber, S. L. CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc. Natl Acad. Sci. USA 98, 1454–1458 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357–364 (1997).

    CAS  PubMed  Google Scholar 

  24. Ramirez, J. & Hagman, J. The Mi-2/NuRD complex: a critical epigenetic regulator of hematopoietic development, differentiation and cancer. Epigenetics 4, 532–536 (2009).

    CAS  PubMed  Google Scholar 

  25. Yoshida, T. et al. The role of the chromatin remodeler Mi-2β in hematopoietic stem cell self-renewal and multilineage differentiation. Genes Dev. 22, 1174–1189 (2008). This study investigated the function of the NuRD complex in haematopoietic stem cells using CHD4-conditional knockout mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, X., Jia, S., Wang, S., Wang, Y. & Meng, A. Mta3-NuRD complex is a master regulator for initiation of primitive hematopoiesis in vertebrate embryos. Blood 114, 5464–5472 (2009).

    CAS  PubMed  Google Scholar 

  27. Gao, H. et al. Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proc. Natl Acad. Sci. USA 106, 11258–11263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Williams, C. J. et al. The chromatin remodeler Mi-2β is required for CD4 expression and T cell development. Immunity 20, 719–733 (2004).

    CAS  PubMed  Google Scholar 

  29. Naito, T., Gomez-Del Arco, P., Williams, C. J. & Georgopoulos, K. Antagonistic interactions between Ikaros and the chromatin remodeler Mi-2β determine silencer activity and Cd4 gene expression. Immunity 27, 723–734 (2007).

    CAS  PubMed  Google Scholar 

  30. Hong, W. et al. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 24, 2367–2378 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao, Z. et al. FOG-1-mediated recruitment of NuRD is required for cell lineage re-enforcement during haematopoiesis. EMBO J. 29, 457–468 (2010).

    CAS  PubMed  Google Scholar 

  32. Cismasiu, V. B. et al. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 24, 6753–6764 (2005).

    CAS  PubMed  Google Scholar 

  33. Grabarczyk, P. et al. Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells. Oncogene 26, 3797–3810 (2007).

    CAS  PubMed  Google Scholar 

  34. Cobb, B. S. et al. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev. 14, 2146–2160 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaji, K. et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature Cell Biol. 8, 285–292 (2006).

    CAS  PubMed  Google Scholar 

  36. Zhu, D., Fang, J., Li, Y. & Zhang, J. Mbd3, a component of NuRD/Mi-2 complex, helps maintain pluripotency of mouse embryonic stem cells by repressing trophectoderm differentiation. PLoS ONE 4, e7684 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Pencil, S. D., Toh, Y. & Nicolson, G. L. Candidate metastasis-associated genes of the rat 13762NF mammary adenocarcinoma. Breast Cancer Res. Treat. 25, 13165–13174 (1993).

    Google Scholar 

  38. Nicolson, G. L. et al. Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin. Exp. Metastasis 20, 19–24 (2003).

    CAS  PubMed  Google Scholar 

  39. Zhang, X. Y. et al. Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc. Natl Acad. Sci. USA 102, 13968–13973 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Toh, Y. & Nicolson, G. L. The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin. Exp. Metastasis 26, 215–227 (2009).

    CAS  PubMed  Google Scholar 

  41. Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113, 207–219 (2003). This paper demonstrates that MTA family members form distinct NuRD complexes.

    CAS  PubMed  Google Scholar 

  42. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mazumdar, A. et al. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biol. 3, 30–37 (2001). This paper shows that MTA1 expression can be upregulated by the heregulin–ERBB2 pathway in breast cancer cells and represses ER activity.

    CAS  PubMed  Google Scholar 

  44. Molli, P. R., Singh, R. R., Lee, S. W. & Kumar, R. MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. Oncogene 27, 1971–1980 (2008).

    CAS  PubMed  Google Scholar 

  45. Kumar, R. Another tie that binds the MTA family to breast cancer. Cell 113, 142–143 (2003).

    CAS  PubMed  Google Scholar 

  46. Zhang, H., Stephens, L. C. & Kumar, R. Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clin. Cancer Res. 12, 1479–1486 (2006). This paper demonstrates the opposing expression pattern of MTA1 and MTA3 during breast cancer progression.

    CAS  PubMed  Google Scholar 

  47. Reisman, D., Glaros, S. & Thompson, E. A. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009).

    CAS  PubMed  Google Scholar 

  48. Bracken, A. P. & Helin, K. Polycomb group proteins: navigators of lineage pathways led astray in cancer. Nature Rev. Cancer 9, 773–784 (2009).

    CAS  Google Scholar 

  49. Jaye, D. L. et al. The BCL6-associated transcriptional co-repressor, MTA3, is selectively expressed by germinal centre B cells and lymphomas of putative germinal centre derivation. J. Pathol. 213, 106–115 (2007).

    CAS  PubMed  Google Scholar 

  50. Kusam, S. & Dent, A. Common mechanisms for the regulation of B cell differentiation and transformation by the transcriptional repressor protein BCL-6. Immunol. Res. 37, 177–186 (2007).

    CAS  PubMed  Google Scholar 

  51. Satterwhite, E. et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 98, 3413–3420 (2001).

    CAS  PubMed  Google Scholar 

  52. Liu, P. et al. Bcl11a is essential for normal lymphoid development. Nature Immunol. 4, 525–532 (2003).

    CAS  Google Scholar 

  53. Wakabayashi, Y. et al. Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nature Immunol. 4, 533–539 (2003).

    CAS  Google Scholar 

  54. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    CAS  PubMed  Google Scholar 

  55. Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Rev. Cancer 7, 415–428 (2007).

    CAS  Google Scholar 

  56. Fu, J. et al. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res. 21, 275–289 (2011).

    CAS  PubMed  Google Scholar 

  57. Morey, L. et al. MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol. Cell. Biol. 28, 5912–5923 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Srinivasan, R., Mager, G. M., Ward, R. M., Mayer, J. & Svaren, J. NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex. J. Biol. Chem. 281, 15129–15137 (2006).

    CAS  PubMed  Google Scholar 

  59. Adamson, E. D. & Mercola, D. Egr1 transcription factor: multiple roles in prostate tumor cell growth and survival. Tumour Biol. 23, 93–102 (2002).

    CAS  PubMed  Google Scholar 

  60. Abdulkadir, S. A. et al. Frequent and early loss of the EGR1 corepressor NAB2 in human prostate carcinoma. Hum. Pathol. 32, 935–939 (2001).

    CAS  PubMed  Google Scholar 

  61. Sancho, R. et al. JNK signalling modulates intestinal homeostasis and tumourigenesis in mice. EMBO J. 28, 1843–1854 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, R. et al. ZIP: a novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis. EMBO J. 28, 2763–2776 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoo, Y. G., Kong, G. & Lee, M. O. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1α protein by recruiting histone deacetylase 1. EMBO J. 25, 1231–1241 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000). This paper was the first to demonstrate that the NuRD complex can regulate tumour suppressors via post-translational modifications.

    CAS  PubMed  Google Scholar 

  65. Moon, H. E., Cheon, H. & Lee, M. S. Metastasis-associated protein 1 inhibits p53-induced apoptosis. Oncol. Rep. 18, 1311–1314 (2007).

    CAS  PubMed  Google Scholar 

  66. Gururaj, A. E. et al. MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc. Natl Acad. Sci. USA 103, 6670–6675 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ohshiro, K. et al. Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Rep. 11, 691–697 (2010). This paper shows that post-translational modification of MTA1 is important for its oncogenic activities.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Balasenthil, S. et al. Identification of Pax5 as a target of MTA1 in B-cell lymphomas. Cancer Res. 67, 7132–7138 (2007).

    CAS  PubMed  Google Scholar 

  69. Polo, S. E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S. P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J. 29, 3130–3139 (2010). This paper demonstrates poly(ADP-ribose)-dependent recruitment of the NuRD complex to sites of DNA damage and shows that NuRD has a role in G1/S transition during the cell cycle by modulating p53 function.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal 3, ra3 (2010).

    PubMed  Google Scholar 

  71. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    CAS  PubMed  Google Scholar 

  72. Howard, G., Eiges, R., Gaudet, F., Jaenisch, R. & Eden, A. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27, 404–408 (2008).

    CAS  PubMed  Google Scholar 

  73. Costello, J. F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genet. 24, 132–138 (2000).

    CAS  PubMed  Google Scholar 

  74. McCabe, M. T., Brandes, J. C. & Vertino, P. M. Cancer DNA methylation: molecular mechanisms and clinical implications. Clin. Cancer Res. 15, 3927–3937 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sansom, O. J., Maddison, K. & Clarke, A. R. Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer. Nature Clin. Pract. Oncol. 4, 305–315 (2007).

    CAS  Google Scholar 

  77. Magdinier, F. & Wolffe, A. P. Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia. Proc. Natl Acad. Sci. USA 98, 4990–4995 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sansom, O. J. et al. Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genet. 34, 145–147 (2003).

    CAS  PubMed  Google Scholar 

  79. Helbling Chadwick, L., Chadwick, B. P., Jaye, D. L. & Wade, P. A. The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells. Chromosoma 118, 445–457 (2009).

    PubMed  Google Scholar 

  80. Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl Acad. Sci. USA 107, 18475–18480 (2010). This paper also demonstrates poly(ADP-ribose)-dependent recruitment of NuRD complex to sites of DNA damage. It further suggests a role of the NuRD complex in repressing transcription at sites of DNA damage.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Smeenk, G. et al. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J. Cell Biol. 190, 741–749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Brehm, A. et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449–2458 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    CAS  PubMed  Google Scholar 

  84. Hansen, R. S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA 96, 14412–14417 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Blanco-Betancourt, C. E. et al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome. Blood 103, 2683–2690 (2004).

    CAS  PubMed  Google Scholar 

  86. Larsen, D. H. et al. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. J. Cell Biol. 190, 731–740 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, D. Q. et al. MTA1 coregulator regulates p53 stability and function. J. Biol. Chem. 284, 34545–34552 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Li, D. Q. et al. E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proc. Natl Acad. Sci. USA 106, 17493–17498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nature Biotech. 29, 255–265 (2011).

    CAS  Google Scholar 

  90. Krivtsov, A. V. & Armstrong, S. A. MLL translocations, histone modifications and leukaemia stem-cell development. Nature Rev. Cancer 7, 823–833 (2007).

    CAS  Google Scholar 

  91. Pegoraro, G. et al. Ageing-related chromatin defects through loss of the NURD complex. Nature Cell Biol. 11, 1261–1267 (2009).

    CAS  PubMed  Google Scholar 

  92. Kim, M. S., Chung, N. G., Kang, M. R., Yoo, N. J. & Lee, S. H. Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology 58, 660–668 (2011).

    PubMed  Google Scholar 

  93. Bader, S. et al. MBD1, MBD2 and CGBP genes at chromosome 18q21 are infrequently mutated in human colon and lung cancers. Oncogene 22, 3506–3510 (2003).

    CAS  PubMed  Google Scholar 

  94. Zhu, Y., Harrison, D. J. & Bader, S. A. Genetic and epigenetic analyses of MBD3 in colon and lung cancer. Br. J. Cancer 90, 1972–1975 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ropero, S. et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nature Genet. 38, 566–569 (2006).

    CAS  PubMed  Google Scholar 

  96. Musselman, C. A. et al. Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem. J. 423, 179–187 (2009).

    CAS  PubMed  Google Scholar 

  97. Mansfield, R. E. et al. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J. Biol. Chem. 286, 11779–11791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bouazoune, K. et al. The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. EMBO J. 21, 2430–2440 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Durr, H., Flaus, A., Owen-Hughes, T. & Hopfner, K. P. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 34, 4160–4167 (2006).

    PubMed  PubMed Central  Google Scholar 

  100. Pazin, M. J. & Kadonaga, J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88, 737–740 (1997).

    CAS  PubMed  Google Scholar 

  101. Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    CAS  PubMed  Google Scholar 

  102. Thiagalingam, S. et al. Histone deacetylases: unique players in shaping the epigenetic histone code. Ann. N. Y Acad. Sci. 983, 84–100 (2003).

    CAS  PubMed  Google Scholar 

  103. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).

    CAS  PubMed  Google Scholar 

  104. Nan, X., Campoy, F. J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471–481 (1997).

    CAS  PubMed  Google Scholar 

  105. Oliver, A. W. et al. Crystal structure of the proximal BAH domain of the polybromo protein. Biochem. J. 389, 657–664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Humphrey, G. W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276, 6817–6824 (2001).

    CAS  PubMed  Google Scholar 

  107. Roche, A. E. et al. The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex. J. Mol. Cell. Cardiol. 44, 352–360 (2008).

    CAS  PubMed  Google Scholar 

  108. Murzina, N. V. et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16, 1077–1085 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Wade laboratory for critical comments and suggestions for this manuscript. They apologize to those whose work is not cited owing to space limitations. The authors' research is funded by the Intramural Research Program of the US National Institute of Environmental Health Sciences, NIH (Project number Z01ES101965 to P.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Wade.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Paul A. Wade's homepage

Cell website comments on Ref. 7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, A., Wade, P. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11, 588–596 (2011). https://doi.org/10.1038/nrc3091

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing