Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept

A Corrigendum to this article was published on 01 June 2007

Key Points

  • The vanilloid receptor TRPV1 (transient receptor potential vanilloid subfamily, member 1) is now recognized as a molecular integrator of noxious stimuli ranging from pungent natural products (for example, capsaicin and resiniferatoxin), acidic environment and noxious heat to putative 'endovanilloids' (that is, endogenous TRPV1 agonists). Protons and endovanilloids in an inflammatory soup act together to reduce the thermal-activation threshold of TRPV1. In addition, TRPV1 is modulated through phosphorylation by kinases and is released by phospholipase C from the inhibitory control of PIP2 (phosphatidylinositol 4,5-bisphosphate).

  • TRPV1 is expressed in primary sensory neurons where it appears to be upregulated in various human disease states, including inflammatory bowel disease, irritable bowel syndrome, vulvodynia and mastalgia.

  • TRPV1 is unique in that its excitation by agonists is followed by a lasting refractory state, traditionally referred to as desensitization. Combined, the above findings identify TRPV1 as an attractive target for novel analgesic and anti-inflammatory drugs. Indeed, capsaicin has been in clinical use to relieve chronic neuropathic and inflammatory pain and to suppress urinary bladder overactivity.

  • The clinical use of TRPV1 antagonists is based on the concept that endovanilloids acting on TRPV1 might provide a major contribution to certain pain conditions. The ability of small-molecule TRPV1 antagonists to ameliorate symptoms in animal models of chronic pain, inclusive of cancer pain, proves that this concept works.

  • Several small-molecule TRPV1 antagonists are already undergoing Phase I/II clinical trials for the indications of chronic inflammatory pain and migraine.

  • We argue that TRPV1 agonists and antagonists are not mutually exclusive but rather complementary therapeutic approaches for pain relief. TRPV1 modulators alone or in conjunction with other analgesics are expected to improve the quality of life of people with migraine or chronic intractable pain secondary to cancer, AIDS or diabetes.

  • TRPV1 is also expressed in the CNS and in non-neuronal tissues, where the functions of this receptor are only beginning to be understood. Clearly, TRPV1 is more than a pain sensor. Emerging data indicate that TRPV1 modulators may also be useful in treating disorders other than pain such as urinary urge incontinence, chronic cough, diabetes and irritable bowel syndrome.

Abstract

The clinical use of TRPV1 (transient receptor potential vanilloid subfamily, member 1; also known as VR1) antagonists is based on the concept that endogenous agonists acting on TRPV1 might provide a major contribution to certain pain conditions. Indeed, a number of small-molecule TRPV1 antagonists are already undergoing Phase I/II clinical trials for the indications of chronic inflammatory pain and migraine. Moreover, animal models suggest a therapeutic value for TRPV1 antagonists in the treatment of other types of pain, including pain from cancer. We argue that TRPV1 antagonists alone or in conjunction with other analgesics will improve the quality of life of people with migraine, chronic intractable pain secondary to cancer, AIDS or diabetes. Moreover, emerging data indicate that TRPV1 antagonists could also be useful in treating disorders other than pain, such as urinary urge incontinence, chronic cough and irritable bowel syndrome. The lack of effective drugs for treating many of these conditions highlights the need for further investigation into the therapeutic potential of TRPV1 antagonists.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic summary of TRPV1 signal integration in the peripheral nociceptor terminal.
Figure 2: Chemical structures of selected TRPV1 ligands.
Figure 3: Activation of thermoTRPs by naturally occurring compounds.
Figure 4: Key binding interactions of TRPV1 antagonists.

Similar content being viewed by others

References

  1. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997). This paper reports the molecular cloning, expression and functional characterization of TRPV1, the first vanilloid receptor that responds to heat, acidification and capsaicin.

    Article  CAS  PubMed  Google Scholar 

  2. Szallasi, A. & Blumberg, P. M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 159–212 (1999).

    CAS  PubMed  Google Scholar 

  3. Hautkappe, M. et al. Review of the effectiveness of capsaicin for painful cutaneous disorders and neural dysfunction. Clin. J. Pain 14, 97–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Holzer, P. Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24, 739–768 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Rashid, M. H. et al. Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin creams in neuropathic pain. J. Pharmacol. Exp. Ther. 304, 940–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Rashid, M. H., Inoue, M., Bakoshi, S. & Ueda, H. Increased expression of vanilloid receptor 1 on myelinated primary afferent neurons contributes to the antihyperalgesic effect of capsaicin cream in diabetic neuropathic pain in mice. J. Pharmacol. Exp. Ther. 306, 709–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Geppetti, P. & Holzer, P. Neurogenic Inflammation (CRC, Boca Raton,1996).

    Google Scholar 

  8. Malmberg, A. B. & Bley, K. R. Turning up the Heat on Pain: TRPV1 Receptors in Pain and Inflammation. (Birkhauser, Basel, 2005).

    Book  Google Scholar 

  9. Szallasi, A. & Di Marzo, V. New perspectives on enigmatic vanilloid receptors. Trends Neurosci. 23, 491–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Szallasi, A. Vanilloid (capsaicin) receptors in health and disease. Am. J. Clin. Pathol. 118, 110–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000). These two groups (references 11 and 12) independently describe the first in vivo evidence for the indispensable role of TRPV1 in mediating thermal hyperalgesia.

    Article  CAS  PubMed  Google Scholar 

  13. Reid, G. ThermoTRP channels and cold sensing: what are they really up to? Pflügers Arch. 451, 250–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Krause, J. E., Chenard, B. L. & Cortright, D. N. Transient receptor potential ion channels as targets for the discovery of pain therapeutics. Curr. Opin. Investig. Drugs 6, 48–57 (2005).

    CAS  PubMed  Google Scholar 

  16. Numazaki, M. & Tominaga, M. Nociception and TRP channels. Curr. Drug Targets CNS Neurol. Disord. 3, 479–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Planells-Cases, R. et al. Functional aspects and mechanisms of TRPV1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflügers Arch. 451, 151–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998). The first report that TRPV1 is directly activated by diverse stimuli such as noxious heat, protons and natural pungent compounds such as capsaicin.

    Article  CAS  PubMed  Google Scholar 

  19. Jordt, S. E. et al. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cesare, P., Dekker, L. V., Sardini, A., Parker, P. J. & McNaughton, P. A. Specific involvement of PKC-ε in sensitization of the neuronal response to painful heat. Neuron 23, 617–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4, 5)P2-mediated inhibition. Nature 411, 957–962 (2001). The authors provide evidence that TRPV1 is under the inhibitory control of PIP 2 during resting conditions. Algesic and pro-inflammatory agents like bradykinin and nerve-growth factor may release TRPV1 from its PIP 2 -mediated blockade.

    Article  CAS  PubMed  Google Scholar 

  22. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999). Anandamide, originally identified as an endogenous cannabinoid B1 receptor ligand, is emerging as a putative endovanilloid (endogenous capsaicin-like substances).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, S. M. et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl Acad. Sci. USA 99, 8400–8405 (2002). This paper describes the first biochemical proof for the existence of potent endovanilloids in the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hwang, S. W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA 97, 6155–6160 (2000). This paper identifies lipoxygenase products that are produced during inflammation as endogenous TRPV1 activators.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin, J. et al. Bradykinin-12-lipoxygenase-VR1 signalling pathway for inflammatory hyperalgesia. Proc. Natl Acad. Sci. USA 99, 10150–10155 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moriyama, T. et al. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanisms of prostaglandins. Mol. Pain 1, 3–9 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tominaga M., Wada, M. & Masu, M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl Acad. Sci. USA 98, 6951–6956 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Negri, L. et al. Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J. Neurosci. 26, 6716–6127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahern, G. P., Wang, X. & Miyares, R. L. Polyamines are potent ligands for the capsaicin receptor TRPV1. J. Biol. Chem. 281, 8991–8995 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Cuypers, E., Yanagihara, A., Karlsson, E. & Tytgat, J. Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Lett. 580, 5728–5732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siemens, J. et al. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444, 208–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Bhave, G. et al. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35, 721–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Premkumar, L. S. & Ahern, G. P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985–990 (2000). This paper provides the first evidence that TRPV1 might be activated not only by ligands but also through phosphorylation by PKC.

    Article  CAS  PubMed  Google Scholar 

  34. Numazaki, M., Tominaga, T., Toyooka, H. & Tominaga, M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase C-ε and identification of two target serine residues. J. Biol. Chem. 277, 13375–13378 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Mohapatra, D. P. & Nau, C. Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J. Biol. Chem. 280, 13424–13432 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Jung, J. et al. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding. J. Biol. Chem. 279, 7048–7054 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Patwardhan, A. M. et al. The cannabinoid WIN 55, 212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. Proc. Natl Acad. Sci. USA 103, 11393–11398 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vetter, I., Wyse, B. D., Monteith, G. R., Roberts-Thomson, S. J. & Cabot, P. J. The m opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol. Pain 2, 22 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Binzen, U. Co-expression of the votage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons. Neuroscience 142, 527–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fristad, I., Berggen, E. & Haug, S. R. Delta (δ) opioid receptors in small and medium-sized trigeminal neurons supporting the dental pulp of rats. Arch. Oral Biol. 51, 273–281 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Sculptoreanu, A. et al. Protein kinase C contributes to abnormal capsaicin responses in DRG neurons from cats with feline interstitial cystitis. Neurosci. Lett. 381, 42–46 (2005). This study raises the intriguing possibility that TRPV1 might not only be overexpressed but also molecularly altered (by phosphorylation) in disease states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Y. et al. High-affinity partial agonists of the vanilloid receptor. Mol. Pharmacol. 64, 325–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Jordt, S. E. & Julius, D. Molecular basis for species-specific sensitivity to 'hot' chili peppers. Cell 108, 421–430 (2002). This paper provides evidence for the existence of a specific capsaicin-binding domain in TRPV1.

    Article  CAS  PubMed  Google Scholar 

  44. Johnson, D. M. et al. Functional mapping of the transient receptor potential vanilloid 1 intracellular binding site. Mol. Pharmacol. 70, 1005–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Sutton, K. G. et al. Functional characterization of the S512Y mutant vanilloid human TRPV1 receptor. Br. J. Pharmacol. 146, 702–711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tousova, K., Vyklicky, L., Susankova, K., Benedikt, J. & Vlachova, V. Gadolinium activates and sensitizes the vanilloid receptor TRPV1 through the external protonation sites. Mol. Cell. Neurosci. 30, 207–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Klionsky, L. et al. A polyclonal antibody to the pre-pore loop of TRPV1 blocks channel activation. J. Pharmacol. Exp. Ther. 319, 192–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Brauchi, S., Orta, G., Salazar, M., Rosenmann, E. & Latorre, R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 26, 4835–4840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gavva, N. et al. Proton activation does not alter antagonist interaction with the capsaicin-binding pocket of TRPV1. Mol. Pharm. 68, 1524–1533 (2005).

    CAS  Google Scholar 

  50. Szolcsányi, J. Forty years in capsaicin research for sensory pharmacology. Neuropeptides 38, 377–384 (2006).

    Article  CAS  Google Scholar 

  51. Suzuki, M., Sato, J., Kutsuwada, K., Ooki, G. & Imai, M. Cloning of a stretch-inhibitable nonselective cation channel. J. Biol. Chem. 274, 6330–6335 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Xue, Q., Yu, Y., Trilk, S. L., Jong, B. E. & Schumacher, M. A. The genomic organization of the gene encoding the vanilloid receptor: evidence for multiple splice variants. Genomics 76, 14–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Sanchez, J. F., Krause, J. E. & Cortright, D. N. The distribution and regulation of vanilloid receptor VR1 and VR1 5′ splice variant RNA expression in rat. Neuroscience 107, 373–381 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Schumacher, M. A., Moff, I., Sudanagunta, S. P. & Levine, J. D. Molecular cloning of an N-terminal splice variant of the capsaicin receptor. Loss of N-terminal domains suggests functional divergence among capsaicin receptor subtypes. J. Biol. Chem. 275, 2756–2762 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Tian, W., Wang, D. H. & Cohen, D. M. Regulation of TRPV1 by a novel renally expressed TRPV1 splice variant. Am. J. Physiol. Renal Physiol. 290, F117–F126 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, G., Hu, H. Z., Colton, C. K., Wood, J. D. & Zhu, M. X. An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of the TRPV1 channel. J. Biol. Chem. 279, 37423–37430 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Lu, G., Henderson, D., Liu, L., Reinhart, P. H. & Simon, S. A. TRPV1b: a functional human vanilloid receptor splice variant. Mol. Pharmacol. 67, 1119–1127 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Sharif Naeini, R., Witty, M. F., Seguela, P. & Borque, C. W. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature Neurosci. 9, 93–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Guler, A. D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Sano, T. et al. Immunocyte Ca2+ influx mediated by LTRPC2. Science 293, 1327–1330 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Xu, X. Z., Moebius, F., Gill, D. L. & Montell, C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl Acad. Sci. USA 98, 10692–10697 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. van de Graaf, S. F., Hoenderop, J. G. & Bindels, R. J. Regulation of TRPV5 and TRPV6 by associated proteins. Am. J. Physiol. Renal Physiol. 290, F1295–F1302 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Szallasi, A. Small molecule vanilloid TRPV1 receptor antagonists approaching drug status: can they live up to the expectations? Naunyn Schmiedeberg's Arch. Pharmacol. 373, 273–286 (2006).

    Article  CAS  Google Scholar 

  70. Wilson-Gerwing, T. D., Dmyterko, M. V., Zochodne, D. W., Johnston, J. M. & Verge, V. M. Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. J. Neurosci. 25, 758–767 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yiangou, Y. et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 357, 1338–1339 (2001). The first report of disease-related change in TRPV1 expression.

    Article  CAS  PubMed  Google Scholar 

  72. Chan, C. L. et al. Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet 361, 385–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Tympanidis, P. et al. Increased vanilloid receptor VR1 innervation of vulvodynia. Eur. J. Pain 8, 129–133 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Gopinath, P. et al. Increased capsaicin receptor TRPV1 in skin nerve fibers and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain. BMC Womems Health 5, 2–7 (2005).

    Article  CAS  Google Scholar 

  75. Lauria, G. et al. Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J. Periph. Nervous Syst. 11, 262–271 (2006).

    Article  CAS  Google Scholar 

  76. Ma, Q. P. Expression of capsaicin receptor (VR1) by myelinated primary afferent neurons in rats. Neurosci. Lett. 319, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Hudson, L. J. et al. VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur. J. Neurosci. 13, 2105–2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Horie, S. et al. Protective role of vanilloid receptor type 1 in HCl-induced gastric mucosal lesions in rats. Scand. J. Gastroenterol. 39, 303–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Mózsik, G., Szolcsányi, J. & Rácz, I. Gastroprotection induced by capsaicin in healthy human subjects. World J. Gastroenterol. 11, 5180–5184 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Holzer, P. Vanilloid receptor TRPV1: hot on the tongue and inflaming the colon. Neurogastroenterol. Motil. 16, 697–699 (2004).

    Article  PubMed  Google Scholar 

  81. Mezey, E. et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl Acad. Sci. USA 97, 3655–3660 (2000). The first unequivocal evidence that TRPV1 exists in various brain nuclei.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Steenland, H. W., Ko, S. W., Wu, L.-L. & Zhuo, M. Hot receptors in the brain. Mol. Pain 2, 34–42 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cui, M. et al. TRPV1 receptors in the CNS play a key role on broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 26, 9385–9393 (2006). This paper argues that CNS penetration increases the analgesic activity of TRPV1 antagonists.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weil, A., Moore, S. E., Waite, N. J., Randall, A. & Gunthorpe, M. J. Conservation of functional and pharmacological properties in the distantly related temperature sensors TRPV1 and TRPM8. Mol. Pharmacol. 68, 518–527 (2005).

    CAS  PubMed  Google Scholar 

  85. Chizh, B. et al. The TRPV1 antagonist SB705498 attenuates TRPV1 receptor-mediated activity and inhibits inflammatory hyperalgesia in humans: results from a Phase 1 study. Poster# 765. American Pain Society Meeting 2006 web site, [online] (2006). This abstract is the first experimental proof to the concept that small-molecule TRPV1 antagonists can relieve pain in humans.

  86. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci. 5, 856–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Swanson, D. M. et al. Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. J. Med. Chem. 48, 1857–1872 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Issekutz, B., Lichtneckert. I. & Nagy, H. Effect of capsaicin and histamine on heat regulation. Arch. Int. Pharmacodyn. Ther. 81, 35–46 (1950).

    CAS  PubMed  Google Scholar 

  89. Iida, T., Shimizu, I., Nealen, M. L., Campbell, A. & Caterina, M. Attenuated fever response in mice lacking TRPV1. Neurosci. Lett. 378, 28–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Keeble, J. E. & Brain, S. D. Capsaicin-induced vasoconstriction in the mouse knee joint: a study using TRPV1 knockout mice. Neurosci. Lett. 401, 55–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Barton, N. J. et al. Attenuation of experimental arthritis in TRPV1R knockout mice. Exp. Mol. Pathol. 81, 166–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Ghilardi, J. R. et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci. 25, 3126–3131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Culshaw, A. J. et al. Identification and biological characterization of 6-aryl-7-isopropylquinazolinones as novel TRPV1 antagonists that are effective in models of chronic pain. J. Med. Chem. 49, 471–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Honore, P. et al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther. 314, 410–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Pomonis, J. D. et al. N-(4-Tertiarybutylphenyl)-4-(3-chlorophyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. in vivo characterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 306, 387–393 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Walker, K. M. et al. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 304, 56–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Docherty, R. J., Yeats, J. C. & Piper, A. S. Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture. Br. J. Pharmacol. 121, 1461–1467 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, L. & Simon, S. A. Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia. Neurosci. Lett. 228, 29–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Jones, R. C., Xu, L. & Gebhart, G. F. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 25, 10981–10989 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Matthews, P. J. et al. Increased capsaicin receptor TRPV1 nerve fibres in the inflamed human oesophagus. Eur. J. Gastroenterol. Hepatol. 16, 897–902 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Wick, E. C. et al. Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G959–G969 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Hutter, M. M. et al. Transient receptor potential vanilloid (TRPV-1) promotes neurogenic inflammation in the pancreas via activation of the neurokinin-1 receptor (NK-1R). Pancreas 30, 260–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Sugiura, T., Bielefeldt, K. & Gebhart, G. F. Mouse colon sensory neurons detect extracellular acidosis via TRPV1. Am. J. Physiol. Cell Physiol. 24 Jan 2007 (doi:10.1152/ajpcell.00440.2006).

  104. Avelino, A. & Cruz, F. TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. Naunyn Schmiedebergs Arch. Pharmacol. 373, 287–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Apostolidis, A. et al. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 65, 400–405 (2005).

    Article  PubMed  Google Scholar 

  106. Apostolidis, A. et al. Decreased sensory receptors P2X3 and TRPV1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J. Urol. 174, 977–982 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Dinis, P. et al. Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J. Neurosci. 24, 11253–11263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Veronesi, B. & Oortgiesen, M. The TRPV1 receptor: target of toxicants and therapeutics. Toxicol. Sci. 89, 1–3 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Geppetti, P., Materazzi, S. & Nicoletti, P. The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur. J. Pharmacol. 533, 207–214 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Dai, K. et al. Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily1 activity reveals a mechanism for proteinase-indiuced inflammatory pain. J. Neurosci. 24, 4239–4249 (2004).

    Article  CAS  Google Scholar 

  111. Amadesi, S. et al. Protease-activated receptor 2 sensitizes TRPV1 by protein kinase Cε- and A-dependent mechanisms in rats and mice. J. Physiol. 575, 555–571 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gatti, I. et al. Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs. J. Appl. Physiol. 101, 506–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Collier, J. G. & Fuller, R. W. Capsaicin inhalation in man and the effects of sodium cromoglycate. Br. J. Pharmacol. 81, 113–117 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mitchell, J. E. et al. Expression and characterization of the intracellular vanilloid receptor (TRPV1) in bronchi from patients with chronic cough. Exp. Lung Res. 31, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Carr, M. J., Kollarik, M., Meeker, S. N. & Undem, B. J. A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J. Pharmacol. Exp. Ther. 304, 1275–1279 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Lalloo, U. G., Fox, A. J., Belvisi, M. G., Chung, K. F. & Barnes, P. J. Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs. J. Appl. Physiol. 79, 1082–1087 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Trevisani, M. et al. Antitussive activity of iodo-resiniferatoxin in guinea pigs. Thorax 59, 769–772 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. McLeod, M. et al. TRPV1 antagonists attenuate antigen-provoked cough in ovalbumin sensitized guinea pigs. Cough 2, 10–16 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chung, K. F. Measurement of cough. Respir. Physiol. Neurobiol. 152, 329–339 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Lewis, C. A. et al. Animal models of cough: literature review and presentation of a novel cigarette smoke-enhanced cough model in the guinea-pig. Pulm. Pharmacol. Ther. 13 Dec 2006 (doi:10.1016/j.pupt.2006.12.001).

  121. Belvisi, M. & Geppetti, P. Current of future drugs for the treatment of chronic cough. Thorax 59, 438–440 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Goadsby, P. J. Calcitonin gene-related peptide antagonists as treatments of migraine and other primary headaches. Drugs 65, 2557–2567 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Dux, M., Sántha, P. & Jancsó, G. Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat. J. Physiol. 552, 859–867 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Geppetti, P. et al. CGRP and migraine: neurogenic inflammation revisited. J. Headache Pain 6, 61–70 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Akerman, S., Kaube, H. & Goadsby, P. J. Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br. J. Pharmacol. 142, 1354–1360 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gennari, C. et al. Pletysmographic evaluation of the vascular effects of human calcitonin gene-related peptide in man. Angiology 42, 462–467 (1991).

    Article  CAS  PubMed  Google Scholar 

  127. Marquez-Rodas, I., Longo, F., Rothlin, R. P. & Balfagon, G. Pathophysiology and therapeutic possibilities of calcitonin gene-related peptide in hypertension. J. Physiol. Biochem. 62, 45–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, Y. & Wang, D. H. A novel mechanism contributing to development of Dahl salt-sensitive hypertension: role of the transient receptor potential vanilloid type 1. Hypertension 47, 609–614 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Pacher, P., Batkai, S. & Kunos, G. Haemodynamic profile and responsiveness to anandamide of TRPV1 receptor knock-out mice. J. Physiol. 558, 647–657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mizuno, A., Matsumoto, N., Imai, M. & Suzuki, M. Impaired osmotic sensation in mice lacking TRPV4. Am. J. Physiol. Cell Physiol. 285, C96–C101 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Kallner, G., Gonon, A. & Franco-Cereceda, A. Calcitonin gene-related peptide in myocardial ischaemia and reperfusion in the pig. Cardiovasc. Res. 38, 493–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Sekiguchi, N. et al. Effect of calcitonin gene-related peptide on coronary microvessels and its role in acute myocardial ischemia. Circulation 89, 366–374 (1994).

    Article  CAS  PubMed  Google Scholar 

  133. Wu, D. M., van Zwieten, P. A. & Doods, H. N. Effects of calcitonin gene-related peptide and BIBN4096BS on myocardial ischemia in anesthetized rats. Acta Pharmacol. Sin. 22, 588–594 (2001).

    CAS  PubMed  Google Scholar 

  134. Chai, W., Mehrotra, S., Jan Danser, A. H. & Schoemaker, R. G. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning in isolated rat hearts. Eur. J. Pharmacol. 531, 246–253 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, L. & Wang, D. H. TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 112, 3617–3623 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Pan, H. L. & Chen, S. R. Sensing tissue ischemia: another new function for capsaicin receptors? Circulation 110, 1826–1831 (2004).

    Article  PubMed  Google Scholar 

  137. Zahner, M. R., Li, D. P., Chen, S. R. & Pan, H. L. Cardiac vanilloid receptor-1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J. Physiol. 551, 515–523 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Szolcsányi, J., Joó, F. & Jancsó-Gábor, A. Mitochondrial changes in preoptic neurons after capsaicin desensitization of the hypothalamic thermodetectors in rat. Nature 229, 116–117 (1971).

    Article  PubMed  Google Scholar 

  139. Dogan, M. D. et al. Lipopolysaccharide fever is initiated via a capsaicin-sensitive mechanism independent of the subtype-1 vanilloid receptor. Br. J. Pharmacol. 143, 1023–1032 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Marinelli, S. et al. Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. J. Neurosci. 23, 3136–3144 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim, S. R. et al. Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J. Neurosci. 25, 662–671 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Marsch, R. et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci. 27, 832–839 (2007). This report implicates brain TRPV1 in anxiety, fear and learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ahren, B. Autonomic regulation of islet hormone secretion — implications for health and disease. Diabetologia 43, 393–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Akiba, Y. et al. Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet β cells modulates insulin secretion in rats. Biochem. Biophys. Res. Commun. 321, 219–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Van Buren, J. J., Bhat, S., Rotello, R., Pauza, M. E. & Premkumar, L. S. Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol. Pain 27, 17–22 (2005).

    Google Scholar 

  146. Khachatryan, A. et al. Targeted expression of the neuropeptide calcitonin gene-related peptide to β cells prevents diabetes in NOD mice. J. Immunol. 158, 1409–1416 (1997).

    CAS  PubMed  Google Scholar 

  147. Pettersson, M., Ahren, B., Bottcher, G. & Sundler, F. Calcitonin gene-related peptide: occurrence in pancreatic islets in the mouse and the rat and inhibition of insulin secretion in the mouse. Endocrinology 119, 865–869 (1986).

    Article  CAS  PubMed  Google Scholar 

  148. Guillot, E., Coste, A. & Angel, I. Involvement of capsaicin-sensitive nerves in the regulation of glucose tolerance in diabetic rats. Life Sci. 59, 969–977 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Moesgaard, S. G. et al. Sensory nerve inactivation by resiniferatoxin improves insulin sensitivity in male obese Zucker rats. Am. J. Physiol. Endocrinol. Metab. 288, e1137–e1145 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Razavi, R. et al. TRPV1+ sensory neurons control β cell stress and islet inflammation in autoimmune diabetes. Cell 127, 1123–1135 (2006). This report implies a novel role for TRPV1 in the pathomechanism of type 1 diabetes.

    Article  CAS  PubMed  Google Scholar 

  151. Szallasi, A., Cruz, F. & Geppetti, P. TRPV1: a therapeutic target for novel analgesic drugs? Trends Mol. Med. 12, 545–554 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Immke, D. C. & Gavva, N. R. The TRPV1 receptor and nociception. Semin. Cell Develop. Biol. 17, 582–591 (2006).

    Article  CAS  Google Scholar 

  153. Shimosato, G. et al. Peripheral inflammation induces up-regulation of TRPV2 expression in rat DRG. Pain 119, 225–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  PubMed  Google Scholar 

  155. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Chung, M. K., Lee, H., Mizuno, A., Suzuki, M. & Caterina, M. J. 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J. Neurosci. 24, 5177–5182 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hu, H. Z. et al. Potentiation of TRPV3 channel function by unsaturated fatty acids. J. Cell Physiol. 208, 201–212 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Watanabe, H. et al. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 277, 47044–47051 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Vriens J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl Acad. Sci. USA 101, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Smith, B. et al. Bisandrographolide from Andropraphis paniculata activates TRPV4 channels. J. Biol. Chem. 281, 29897–29904 (2006).

    Article  CAS  PubMed  Google Scholar 

  162. Liedtke, W. & Friedman, J. M. Abnormal osmotic regulation in Trpv4−/− mice. Proc. Natl Acad. Sci. USA 100, 13698–13703 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278, 22664–22668 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Todaka, H., Taniguchi, J., Satoh, J., Mizuno, A. & Suzuki, M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J. Biol.Chem. 279, 35133–35138 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Lee, H., Iida, T., Mizuno, A., Suzuki, M. & Caterina, M. J. Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J. Neurosci. 25, 1304–1310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Alessandri-Haber, N., Dina, O. A., Joseph, E. K., Reichling, D. & Levine, J. D. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J. Neurosci. 26, 3864–3874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Alessandri-Haber, N. et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci. 24, 4444–4452 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Togashi, T. et al. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 25, 1804–1815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang, Z. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Kobayashi, K. et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with A δ/C-fibers and colocalization with trk receptors. J. Comp. Neurol. 493, 596–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Babes, A., Zorzon, D. & Reid, G. Two populations of cold-sensitive neurons in rat dorsal root ganaglia and their modulation by nerve growth factor. Eur. J. Neurosci. 20, 2276–2282 (2004).

    Article  PubMed  Google Scholar 

  172. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006). This paper describes the behavioral deficit of TRPA1−/− mice in developing mustard-oil- and bradykin-induced nocifensive pain and hyperalgesia.

    Article  CAS  PubMed  Google Scholar 

  174. Bautista, D. M. et al. Pungent products from garlic activates the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA 102, 12248–12252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Macpherson, L. J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Hinman, A. et al. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006). The authors report that TRPA1 -mutant mice exhibit a defect in sensing noxious cold temperature.

    Article  CAS  PubMed  Google Scholar 

  179. Katsura, H. et al. Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp. Neurol. 200, 112–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Walpole, C. S. J. et al. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J. Med. Chem. 37, 1942–1954 (1994).

    Article  CAS  PubMed  Google Scholar 

  181. Gunthorpe, M. J. et al. Identification and characterization of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist. Neuropharmacol. 46, 133–149 (2004).

    Article  CAS  Google Scholar 

  182. Gavva, N. J. et al. AMG9810 [(E)-3-(4-t-butylphenyl)-N-(2, 3-dihydrobenzol[b][1, 4]dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J. Pharmacol. Exp. Ther. 313, 474–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Kouhen, R. E. et al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type 1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid. J. Pharmacol. Exp. Ther. 314, 400–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Velanzano, K. J. et al. N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-barboxamide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: I. in vitro characterization and pharmacokinetic properties. J. Pharmacol. Exp. Ther. 306, 377–386 (2003).

    Article  CAS  Google Scholar 

  185. Rami, H. K. et al. Discovery of SB-705498: a potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorg. Med. Chem. Lett. 16, 3287–3291 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Zheng, X. et al. From arylureas to biarylamides to aminoquinazolines: discovery of a novel, potent TRPV1 (VR1) antagonist. The 232nd ACS National Meeting, San Francisco, CA, September 10–14, 2006 web site, [online] (2006)

  187. Ognyanov, V. I. et al. Design of potent, orally available antagonists of the transient receptor potential vanilloid 1. Structure-activity relationships of 2-piperazine-1-yl-1H-benzimidazoles. J. Med. Chem. 49, 3719–3742 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A PubMed search using the keyword TRPV1 identified 582 references. We apologize to the authors whose work could not be cited here owing to space limitations. We are grateful to S. Kane, J. Van Adelsberg, R. Blanchard, B. Chenard and J. E. Krause for their critical reading of the manuscript. We would also like to thank A. Eid for providing most of the photographs used in Figure 3 and F. and K. Starr (www.hear.org/starr) for the photograph of camphor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpad Szallasi.

Ethics declarations

Competing interests

D.N.C., C.A.B. and S..R.E. are employed by commercial entities that are developing TRPV1 antagonists for the treatment of pain and other conditions.

Related links

Related links

FURTHER INFORMATION

SB-705498 Dental Pain Study

Use Of SB-705498 In The Acute Treatment Of Migraine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szallasi, A., Cortright, D., Blum, C. et al. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6, 357–372 (2007). https://doi.org/10.1038/nrd2280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing