Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development

Key Points

  • Molecular-cloning studies have revealed the existence of five molecularly distinct mammalian muscarinic acetylcholine receptors (mAChRs), M1–M5, which are all members of the superfamily of class I (rhodopsin-like) G-protein-coupled receptors (GPCRs). Each of the five mAChR subtypes exhibits a distinct pattern of distribution and G-protein coupling/signalling profile.

  • The mAChRs regulate many important central and peripheral functions including cognitive, behavioural, sensory, motor and autonomic processes, and the well-known actions of acetylcholine (ACh) on effector tissues innervated by parasympathetic nerves. Interestingly, changes in mAChR function have been implicated in several important pathophysiological disorders including Alzheimer's disease, Parkinson's disease, depression, schizophrenia, urinary incontinence and chronic obstructive pulmonary disease.

  • Primarily owing to the lack of muscarinic ligands that have a high degree of selectivity for the individual mAChR subtypes, it is unclear in many cases which specific mAChR subtypes are involved in mediating the various muscarinic actions of ACh. However, such knowledge is essential for the rational design of novel muscarinic drugs with increased efficacy and reduced side effects.

  • However, recent studies using mutant mouse strains deficient in each of the five mAChR subtypes have led to a wealth of novel information regarding the physiological and potential pathophysiological roles of the individual receptor subtypes. Importantly, such studies have identified specific mAChR-regulated pathways as potentially novel targets for the treatment of various important pathophysiological conditions including Alzheimer's disease, Parkinson's disease, schizophrenia and type 2 diabetes.

  • Consequently, a major challenge remains in the development of small-molecule ligands exhibiting a high degree of selectivity for the individual mAChR subtypes. Such agents will probably include compounds that act on secondary (allosteric) sites that, in contrast to the classical (orthosteric) muscarinic binding site, are less well-conserved among the different mAChR subtypes.

Abstract

Muscarinic acetylcholine receptors (mAChRs), M1–M5, regulate the activity of numerous fundamental central and peripheral functions. The lack of small-molecule ligands that can block or activate specific mAChR subtypes with high selectivity has remained a major obstacle in defining the roles of the individual receptor subtypes and in the development of novel muscarinic drugs. Recently, phenotypic analysis of mutant mouse strains deficient in each of the five mAChR subtypes has led to a wealth of new information regarding the physiological roles of the individual receptor subtypes. Importantly, these studies have identified specific mAChR-regulated pathways as potentially novel targets for the treatment of various important disorders including Alzheimer's disease, schizophrenia, pain, obesity and diabetes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subclassification of mAChRs based on differential G-protein-coupling properties.
Figure 2: Chemical structures of selected allosteric muscarinic ligands (agonists).
Figure 3: Suggested roles of midbrain mAChRs in regulating the activity of midbrain dopaminergic neurons.
Figure 4: Scheme displaying the colocalization of M4 mAChRs and D1 dopamine receptors on a subset of striatal GABAergic projection neurons.
Figure 5: Putative localization of airway mAChR subtypes.
Figure 6: Scheme illustrating the central metabolic role of β-cell M3 mAChRs.

Similar content being viewed by others

References

  1. Wess, J. Molecular biology of muscarinic acetylcholine receptors. Crit. Rev. Neurobiol. 10, 69–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Caulfield, M. P. & Birdsall, N. J. M. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol. Rev. 50, 279–290 (1998).

    CAS  PubMed  Google Scholar 

  3. Nathanson, N. M. A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away. Proc. Natl Acad. Sci. USA 97, 6245–6247 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lanzafame, A. A., Christopoulos, A. & Mitchelson, F. Cellular signaling mechanisms for muscarinic acetyl-choline receptors. Recept. Chann. 9, 241–260 (2003).

    Article  CAS  Google Scholar 

  5. Volpicelli, L. A. & Levey, A. I. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog. Brain Res. 145, 59–66 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Abrams, P. et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br. J. Pharmacol. 148, 565–578 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Felder, C. C., Bymaster, F. P., Ward, J. & DeLapp, N. Therapeutic opportunities for muscarinic receptors in the central nervous system. J. Med. Chem. 43, 4333–4353 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Eglen, R. M., Choppin, A. & Watson, N. Therapeutic opportunities from muscarinic receptor research. Trends Pharmacol. Sci. 22, 409–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Wess, J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu. Rev. Pharmacol. Toxicol. 44, 423–450 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Eglen, R. M. Muscarinic receptor subtype pharmacology and physiology. Prog. Med. Chem. 43, 105–136 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Caulfield, M. P. Muscarinic receptors — characterization, coupling and function. Pharmacol. Ther. 58, 319–379 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hamilton, S. E. et al. Disruption of the M1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl. Acad. Sci. USA 94, 13311–13316 (1997). The first study reporting the generation and phenotypic analysis of a mAChR -knockout mouse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomeza, J. et al. Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc. Natl Acad. Sci. USA 96, 1692–1697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gomeza, J. et al. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc. Natl Acad. Sci. USA 96, 10483–10488 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsui, M. et al. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc. Natl Acad. Sci. USA 97, 9579–9584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamada, M. et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410, 207–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Miyakawa, T., Yamada, M., Duttaroy, A. & Wess J. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J. Neurosci. 21, 5239–5250 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerber, D. J. et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc. Natl Acad. Sci. USA 98, 15312–15317 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamada, M. et al. Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc. Natl Acad. Sci. USA 98, 14096–14101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fisahn, A. et al. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation channels. Neuron 33, 615–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Takeuchi, J. et al. Increased drinking in mutant mice with truncated M5 muscarinic receptor genes. Pharmacol. Biochem. Behav. 72, 117–123 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Karasawa, H., Taketo, M. M. & Matsui, M. Loss of anti-cataleptic effect of scopolamine in mice lacking muscarinic acetylcholine receptor subtype 4. Eur. J. Pharmacol. 468, 15–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Ohno-Shosaku, T. et al. Postsynaptic M1 and M3 receptors are responsible for the muscarinic enhancement of retrograde endocannabinoid signalling in the hippocampus. Eur. J. Neurosci. 18, 109–116 (2003).

    Article  PubMed  Google Scholar 

  24. Fukudome, Y. et al. Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur. J. Neurosci. 19, 2682–2692 (2004).

    Article  PubMed  Google Scholar 

  25. Nakamura, T. et al. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J. Physiol. 558, 561–575 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duttaroy, A. et al. Evaluation of muscarinic agonist-induced analgesia in muscarinic acetylcholine receptor knockout mice. Mol. Pharmacol. 62, 1084–1093 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Struckmann, N. et al. Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol. Pharmacol. 64, 1444–1451 (2003)

    Article  CAS  PubMed  Google Scholar 

  28. Matsui, M. et al. Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J. Neurosci. 22, 10627–10632 (2002). This reports the use of mAChR -mutant mice to demonstrate that both M 2 and M 3 receptors play a role in stimulating smooth-muscle contractility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gautam, D. et al. A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab. 3, 449–461 (2006). This study suggests that strategies that can enhance signalling through β-cell M 3 mAChRs may be beneficial in the treatment of type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  30. Matsui, M. et al. Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci. 75, 2971–2981 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Taylor, P. & Brown, J. H. in Goodman Gilman's The Pharmacological Basis of Therapeutics 11th edn Ch. 7 (ed. Brunton, L. L.) 183–200 (McGraw–Hill, New York, 2006).

    Google Scholar 

  32. Hulme, E. C., Lu, Z. L. & Bee, M. S. Scanning mutagenesis studies of the M1 muscarinic acetylcholine receptor. Recept. Chann. 9, 215–228 (2003).

    Article  CAS  Google Scholar 

  33. Birdsall, N. J. M. & Lazareno, S. Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev. Med. Chem. 5, 523–543 (2005). This provides a comprehensive review about allosteric muscarinic ligands.

    Article  CAS  PubMed  Google Scholar 

  34. May, L. T., Leach, K., Sexton, P. M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Lazareno, S., Dolezal, V., Popham, A. & Birdsall, N. J. M. Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol. Pharmacol. 65, 257–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Karlsson, E., Jolkkonen, M., Mulugeta, E., Onali, P. & Adem, A. Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors. Biochimie 82, 793–806 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Potter, L. T. Snake toxins that bind specifically to individual subtypes of muscarinic receptors. Life Sci. 68, 2541–2547 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Spalding T. A. et al. Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol. Pharmacol. 61, 1297–1302 (2002). This reports the identification of a selective M 1 mAChR agonist, which acts by binding to a non-classical muscarinic binding site.

    Article  CAS  PubMed  Google Scholar 

  39. Langmead, C. J. et al. Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M1 receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol. Pharmacol. 69, 236–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Sur, C. et al. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc. Natl Acad. Sci. USA 100, 13674–13679 (2003). This reports that a metabolite of clozapine acts as a selective M 1 mAChR agonist by binding to a site that does not fully overlap with the classical muscarinic binding site.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weiner D. M. et al. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology 177, 207–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bartus, R. T. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 163, 495–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Auld, D. S., Kornecook, T. J., Bastianetto, S. & Quirion, R. Alzheimer's disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 68, 209–245 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16, 710–715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lleo, A., Greenberg, S. M. & Growdon, J. H. Current pharmacotherapy for Alzheimer's disease. Annu. Rev. Med. 57, 513–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Messer, W. S. Jr. Cholinergic agonists and the treatment of Alzheimer's disease. Curr. Top. Med. Chem. 2, 353–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Fisher, A. et al. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease: implications in future therapy. J. Mol. Neurosci. 20, 349–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Caccamo, A. et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49, 671–682 (2006). This shows that a muscarinic agonist (AF267B) can partially reverse the cognitive and neuropathological deficits in a mouse model of Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  49. Marino, M. J., Rouse, S. T., Levey, A. I., Potter, L. T. & Conn, P. J. Activation of the genetically defined M1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc. Natl Acad. Sci. USA 95, 11465–11470 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Levey, A. I. Immunological localization of M1–M5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci. 52, 441–448 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Hamilton, S. E. & Nathanson, N. M. The M1 receptor is required for muscarinic activation of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. J. Biol. Chem. 276, 15850–15853 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Berkeley, J. L. et al. M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol. Cell. Neurosci. 18, 512–524 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Adams, J. P. & Sweatt, J. D. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Shinoe, T., Matsui, M., Taketo, M. M. & Manabe, T. Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J. Neurosci. 25, 11194–11200 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Origlia, N. et al. Muscarinic acetylcholine receptor knockout mice show distinct synaptic plasticity impairments in the visual cortex. J. Physiol. 577, 829–840 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Y., Hamilton, S. E., Nathanson, N. M. & Yan, J. Decreased input-specific plasticity of the auditory cortex in mice lacking M1 muscarinic acetylcholine receptors. Cereb. Cortex 16, 1258–1265 (2006).

    Article  PubMed  Google Scholar 

  57. Paule, M. G. et al. Attention deficit/hyperactivity disorder: characteristics, interventions and models. Neurotoxicol. Teratol. 22, 631–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Anagnostaras, S. G. et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nature Neurosci. 6, 51–58 (2003). A behavioural analysis of M 1 receptor-deficient mice suggesting that M 1 receptors are specifically involved in memory processes in which the cortex and hippocampus interact.

    Article  CAS  PubMed  Google Scholar 

  59. Seeger, T. et al. M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J. Neurosci. 24, 10117–10127 (2004). This reports that M 2 receptor-deficient mice show pronounced deficits in certain cognitive tasks and hippocampal synaptic plasticity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tzavara, E. T. et al. Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol. Psychiatry 8, 673–679 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Segal, M. & Auerbach, J. M. Muscarinic receptors involved in hippocampal plasticity. Life Sci. 60, 1085–1091 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, W. et al. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J. Neurosci. 22, 1709–1717 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Quirion, R. et al. Facilitation of acetylcholine release and cognitive performance by an M2-muscarinic receptor antagonist in aged memory-impaired. J. Neurosci. 15, 1455–1462 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kitaichi, K., Hori, T., Srivastava, L. K. & Quirion, R. Antisense oligodeoxynucleotides against the muscarinic M2, but not M4, receptor supports its role as autoreceptors in the rat hippocampus. Brain Res. Mol. Brain Res. 67, 98–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Quirion, R. et al. Muscarinic receptor subtypes in human neurodegenerative disorders: focus on Alzheimer's disease. Trends Pharmacol. Sci. 10 (Suppl.), 80–84 (1989).

    Google Scholar 

  66. Carey, G. J. et al. SCH 57790, a selective muscarinic M2 receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur. J. Pharmacol. 16, 189–200 (2001).

    Article  Google Scholar 

  67. Lachowicz, J. E. et al. Facilitation of acetylcholine release and improvement in cognition by a selective M2 muscarinic antagonist, SCH 72788. Life Sci. 68, 2585–2592 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Rowe, W. B. et al. Long-term effects of BIBN-99, a selective muscarinic M2 receptor antagonist, on improving spatial memory performance in aged cognitively impaired rats. Behav. Brain Res. 145, 171–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Araya, R. et al. Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol. Dis. 24, 334–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Carlsson, A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179–186 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Raedler, T. J., Bymaster, F. P., Tandon, R., Copolov, D. & Dean, B. Towards a muscarinic hypothesis of schizophrenia. Mol. Psychiatry 12, 232–246 (2007). An up-to-date summary of studies suggesting that muscarinic receptors may represent promising novel targets for the treatment of schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  72. Bymaster, F. P., Felder, C. C., Ahmed, S. & McKinzie, D. Muscarinic receptors as a target for drugs treating schizophrenia. Curr. Drug Targets CNS Neurol. Disord. 1, 163–181 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Scarr, E., Sundram, S., Keriakous, D. & Dean, B. Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol. Psychiatry 61, 1161–1170 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Felder, C. C. et al. Elucidating the role of muscarinic receptors in psychosis. Life Sci. 68, 2605–2613 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Tzavara, E. T. et al. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 18, 1410–1412 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Thomsen, M. et al. Decreased prepulse inhibition and increased sensitivity to muscarinic, but not dopaminergic drugs in M5 muscarinic acetylcholine receptor knockout mice. Psychopharmacology 192, 97–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, H. et al. Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology 29, 2126–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Wise, R. A. Neurobiology of addiction. Curr. Opin. Neurobiol. 6, 243–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Koob, G. F., Sanna, P. P. & Bloom, F. E. Neuroscience of addiction. Neuron 21, 467–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Oakman, S. A., Faris, P. L., Kerr, P. E., Cozzari, C. & Hartman, B. K. Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J. Neurosci. 15, 5859–5869 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Forster, G. L., Yeomans, J. S., Takeuchi, J. & Blaha, C. D. M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J. Neurosci. 22, RC190 (2002). This demonstrates that M 5 receptors on midbrain dopamine neurons facilitate prolonged dopamine release in the nAcc.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vilaro, M. T., Palacios, J. M. & Mengod, G. Localization of M5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci. Lett. 114, 154–159 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Basile, A. S. et al. Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc. Natl Acad. Sci. USA 99, 11452–11457 (2002). This demonstrates for the first time that M 5 receptors have a role in drug-seeking behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fink-Jensen, A. et al. Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J. Neurosci. Res. 74, 91–96 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Thomsen, M. et al. Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J. Neurosci. 25, 8141–8149 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hartvig, P., Gillberg, P. G., Gordh, T. Jr & Post, C. Cholinergic mechanisms in pain and analgesia. Trends Pharmacol. Sci. 10 (Suppl.), 75–79 (1989).

    Google Scholar 

  87. Iwamoto, E. T. & Marion, L. Characterization of the antinociception produced by intrathecally administered muscarinic agonists in rats. J. Pharmacol. Exp. Ther. 266, 329–338 (1993).

    CAS  PubMed  Google Scholar 

  88. Swedberg, M. D. et al. Butylthio[2.2.2] (NNC 11-1053/LY297802): an orally active muscarinic agonist analgesic. J. Pharmacol. Exp. Ther. 281, 876–883 (1997).

    CAS  PubMed  Google Scholar 

  89. Chen, S.-R., Wess, J. & Pan, H.-L. Functional activity of the M2 and M4 receptor subtypes in the spinal cord studied with muscarinic acetylcholine receptor knockout mice. J. Pharmacol. Exp. Ther. 313, 765–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Bernardini, N., Sauer, S. K., Haberberger, R., Fischer, M. J. M. & Reeh, P. W. Excitatory nicotinic and desensitizing muscarinic (M2) effects on C-nociceptors in isolated rat skin. J. Neurosci. 21, 3295–3302 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bernardini, N., Reeh, P. W. & Sauer, S. K. Muscarinic M2 receptors inhibit heat-induced CGRP release from isolated rat skin. Neuroreport 12, 2457–2460 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Bernardini, N. et al. Muscarinic M2 receptors on peripheral nerve endings: a molecular target of nociception. J. Neurosci. 22, RC229 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ellis, J. L. et al. Development of muscarinic analgesics derived from epibatidine: role of the M4 receptor subtype. J. Pharmacol. Exp. Ther. 288, 1143–1150 (1999).

    CAS  PubMed  Google Scholar 

  94. Stengel, P. W., Gomeza, J., Wess, J. & Cohen, M. L. M2 and M4 receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J. Pharmacol. Exp. Ther. 292, 877–885 (2000).

    CAS  PubMed  Google Scholar 

  95. Fisher, J. T., Vincent, S. G., Gomeza, J., Yamada, M. & Wess, J. Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J. 18, 711–713 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Di Chiara, G., Morelli, M. & Consolo, S. Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci. 17, 228–233 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Bernard, V., Normand, E. & Bloch, B. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J. Neurosci. 12, 3591–3600 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ince, E., Ciliax, B. J. & Levey, A. I. Differential expression of D1 and D2 dopamine and M4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27, 357–366 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Barnes, P. J. Muscarinic receptor subtypes in airways. Life Sci. 52, 521–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Coulson, F. R. & Fryer, A. D. Muscarinic acetylcholine receptors and airway diseases. Pharmacol. Ther. 98, 59–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Allen, I. C. et al. Thromboxane A2 induces airway constriction through an M3 muscarinic acetylcholine receptor-dependent mechanism. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L526–L533 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Dogne, J. M. et al. Therapeutic potential of thromboxane inhibitors in asthma. Expert Opin. Investig. Drugs 11, 275–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Eglen, R. M., Hegde, S. S. & Watson, N. Muscarinic receptor subtypes and smooth muscle function. Pharmacol. Rev. 48, 531–565 (1996).

    CAS  PubMed  Google Scholar 

  104. Hegde, S. S. Muscarinic receptors in the bladder: from basic research to therapeutics. Br. J. Pharmacol. 147, S80–S77 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stengel, P. W., Yamada, M., Wess, J. & Cohen, M. L. M3-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1443–R1449 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Stengel, P. W. & Cohen, M. L. Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M2, M3, and M4 in carbamylcholine-induced gallbladder contractility. J. Pharmacol. Exp. Ther. 301, 643–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Unno, T. et al. M2 and M3 muscarinic receptor-mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. Br. J. Pharmacol. 146, 98–108 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kitazawa, T. et al. Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: studies with muscarinic receptor knockout mice. Eur J. Pharmacol. 554, 212–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Unno, T. et al. Roles of M2 and M3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice. Br. J. Pharmacol. 149, 1022–1030 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Matsui, M., Griffin, M. T., Shehnaz, D., Taketo, M. M. & Ehlert, F. J. Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M2 receptor knockout mice. J. Pharmacol. Exp. Ther. 305, 106–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Scully, C. Drug effects on salivary glands: dry mouth. Oral Dis. 9, 165–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Mavragani, C. P., Moutsopoulos, N. M. & Moutsopoulos, H. M. The management of Sjögren's syndrome. Nature Clin. Pract. Rheumatol. 2, 252–261 (2006).

    Article  CAS  Google Scholar 

  113. Turner, R. J. & Sugiya, H. Understanding salivary fluid and protein secretion. Oral Dis. 8, 3–11 (2002).

    Article  PubMed  Google Scholar 

  114. Gautam, D. et al. Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol. Pharmacol. 66, 260–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Fox, R. I., Konttinen, Y. & Fisher, A. Use of muscarinic agonists in the treatment of Sjögren's syndrome. Clin. Immunol. 101, 249–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Aihara, T. et al. Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology 125, 1774–1784 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Aihara, T., Nakamura, Y., Taketo, M. M., Matsui, M. & Okabe, S. Cholinergically stimulated gastric acid secretion is mediated by M3 and M5 but not M1 muscarinic acetylcholine receptors in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1199–G1207 (2005). This analyzes mAChR -mutant mice to define the roles of individual mAChR subtypes in mediating stimulation of gastric acid secretion.

    Article  CAS  PubMed  Google Scholar 

  118. Eglen, R. M. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton. Autacoid Pharmacol. 26, 219–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Kurzen, H., Wessler, I., Kirkpatrick, C. J., Kawashima, K. & Grando, S. A. The non-neuronal cholinergic system of human skin. Horm. Metab. Res. 39, 125–135 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Nguyen, V. T. et al. Synergistic control of keratinocyte adhesion through muscarinic and nicotinic acetylcholine receptor subtypes. Exp. Cell Res. 294, 534–549 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Chernyavsky, A. I., Arredondo, J., Wess, J., Karlsson, E. & Grando, S. A. Novel signaling pathways mediating reciprocal control of keratinocyte migration and wound epithelialization through M3 and M4 muscarinic receptors. J. Cell Biol. 166, 261–272 (2004). The results of this study suggest that muscarinic drugs may become clinically useful in promoting keratinocyte migration and wound healing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kahn, S. E. Clinical review 135: The importance of β-cell failure in the development and progression of type 2 diabetes. J. Clin. Endocrinol. Metab. 86, 4047–4058 (2001).

    CAS  PubMed  Google Scholar 

  123. Ahren, B. Autonomic regulation of islet hormone secretion — implications for health and disease. Diabetologia 43, 393–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Gilon, P. & Henquin, J. C. Mechanisms and physiological significance of the cholinergic control of pancreatic β-cell function. Endocr. Rev. 22, 565–604 (2001).

    CAS  PubMed  Google Scholar 

  125. Duttaroy, A. et al. Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in M3 muscarinic acetylcholine receptor-deficient mice. Diabetes 53, 1714–1720 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Zawalich, W. S. et al. Effects of muscarinic receptor type 3 knockout on mouse islet secretory responses. Biochem. Biophys. Res. Commun. 315, 872–876 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Guo, Y. et al. CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early-onset type 2 diabetes in Pima Indians. Diabetes 55, 3625–3629 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Bockaert, J., Fagni, L., Dumuis, A. & Marin, P. GPCR interacting proteins (GIP). Pharmacol. Ther. 103, 203–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Gautam, D. et al. Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metab. 4, 363–375 (2006). This demonstrates that the absence of M 3 receptors in mice protects against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits.

    Article  CAS  PubMed  Google Scholar 

  130. Nonogaki, K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Nishiyama, T. et al. Up-regulated PAR-2-mediated salivary secretion in mice deficient in muscarinic acetylcholine receptor subtypes. J. Pharmacol. Exp. Ther. 320, 516–524 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Niijima, A. Neural mechanisms in the control of blood glucose concentration. J. Nutr. 119, 833–840 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.W. and D.G. are supported by funding from the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH). We thank C. Pooput (NIDDK, NIH) for generating figure 2. We apologize to the many colleagues whose work we were unable to cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Attention-deficit/hyperactivity disorder

Alzheimer's disease

bronchial asthma

chronic obstructive pulmonary disease

Parkinson's disease

schizophrenia

Sjögren's syndrome

type 2 diabetes

FURTHER INFORMATION

Jürgen Wess's homepage

GPCR database

Glossary

Sjögren's syndrome

A chronic inflammatory autoimmune disease that is characterized by the dryness of mucous membranes, especially of the eyes and mouth, and by infiltration of the affected tissues by lymphocytes.

Orthosteric binding site

The endogenous agonist binding site on a receptor. This domain is also recognized by classic competitive antagonists and inverse agonists.

Allosteric binding site

A modulatory binding site on a receptor that is topographically distinct from the classic agonist binding site.

β-amyloid

An amyloid that is derived from an amyloid precursor protein and is the primary component of plaques that are characteristic of Alzheimer's disease.

MAPKs

(Mitogen-activated protein kinases). A family of enzymes that form an integrated network influencing many cellular functions including differentiation, proliferation and cell death. These cytoplasmic proteins modulate the activities of many other proteins via phosphorylation of serine and threonine side chains.

Morris water maze

A behavioural procedure commonly used to explore the role of the hippocampus in the formation of spatial memory.

Fear conditioning

A method by which organisms learn to fear new stimuli. It is a form of learning in which fear is associated with a particular neutral context (for example, a certain environment) or neutral stimulus (for example, a tone). This can be done by pairing the neutral stimulus with an aversive stimulus (for example, an electrical shock or loud noise). Eventually, the neutral stimulus alone can elicit the state of fear.

Matching-to-sample tasks

Recognition memory tasks in which presentation of a stimulus is usually followed by a delay, after which a choice is offered. In matching tasks, the originally presented stimulus must be chosen; in non-matching tasks, a new stimulus must be selected. With small stimulus sets, the stimuli are frequently repeated and therefore become highly familiar. So, typically, such tasks are most readily solved by short-term or working memory rather than by long-term memory mechanisms.

Long-term potentiation

(LTP). An enduring increase in the amplitude of excitatory postsynaptic potentials as a result of high-frequency stimulation of afferent pathways. LTP has been studied in great detail in the hippocampus.

Nucleus accumbens

A collection of neurons in the basal forebrain that play an important role in reward, pleasure and addiction. It is part of the ventral continuation of the dorsal striatum and shares general principles of connectivity with the striatum.

Pre-pulse inhibition

A behavioural test in which an animal is exposed to an unexpected noise and the response (freezing in place, other signs of anxiety) is observed. For the pre-pulse inhibition, a softer sound is given just before the main stimulus. Under these circumstances, control animals show a reduced startle response to the tone if they received a pre-pulse.

FosB

A member of the Fos family of transcription factors, which dimerize with JUN proteins to form the AP1 transcription factor complex.

Intrathecal administration

The injection of a drug directly into the spinal fluid.

Catalepsy

A condition that occurs in various physical and psychological disorders and is characterized by a lack of response to external stimuli and by muscular rigidity, so that the limbs remain in whatever position they are placed.

Parkinsonism

A group of nervous disorders similar to Parkinson's disease, marked by muscular rigidity, tremor and impaired motor control. They often have a specific cause, such as the use of certain drugs or frequent exposure to certain toxic chemicals.

Irritable bowel syndrome

A chronic noninflammatory disease with a psychophysiological basis, characterized by abdominal pain, diarrhoea or constipation or both, and no detectable pathological change.

Overactive bladder

A chronic medical condition in which the detrusor muscle of the bladder is hyperactive, causing frequent, strong and sudden urges to urinate even when the bladder is not full. In addition to urgency, symptoms include urinary frequency and wetting accidents.

Forskolin

Forskolin is a plant-derived small molecule that binds to the active site of adenylyl cyclase, thus stimulating the synthesis of the signalling molecule cyclic AMP.

Parietal cell

One of the large peripheral cells of the mucous membrane of the stomach that secrete hydrochloric acid.

Keratinocyte

The major cell type of the epidermis, making up about 90% of epidermal cells.

Integrin

Integrins, or integrin receptors, are integral plasma membrane proteins that play key roles in the attachment of cells to the extracellular matrix (ECM) and in signal transduction from the ECM to the cell.

Cre/loxP system

A method used for the introduction of genetic modifications into specific genes by homologous recombination using Cre, a site-specific, bacteriophage P1-derived recombinase. The Cre recombinase cuts at the loxP-tagged genes.

Pre-absorptive phase of feeding

The short initial time period during meal intake when nutrients have not yet entered the blood stream.

RGS proteins

These proteins (regulator of G-protein-signalling proteins) are multifunctional, GTPase-accelerating proteins that promote GTP hydrolysis by the α-subunit of heterotrimeric G-proteins, thereby inactivating the G-protein and rapidly switching off G-protein-coupled receptor signalling pathways.

Congenic

A fully congenic strain is derived by backcrossing mice carrying a locus of interest to mice of another inbred strain for at least ten generations. Successive generations of the recipient strain always have the locus of interest but fewer loci from the donor.

Leptin

A peptide hormone that is produced by fat cells. It has a role in body-mass regulation by acting on hypothalamic leptin receptors to decrease appetite and increase energy consumption.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wess, J., Eglen, R. & Gautam, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6, 721–733 (2007). https://doi.org/10.1038/nrd2379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing